
26084-6001-RU00

FINAL REPORT

FAULT TOLERANT PROGRAMMABLE

DIGITAL ATTITUDE CONTROL

ELECTRONICS STUDY
(NASA-CR-142289) FAULT TOLEANT N75-174L4
PROGRAMMABLE DIGITAL ATTITUDE CONTROL
ELECTRONICS STUDY Final Report (TRf Systems
Group) 479 p HC $12. 0J CSCL 22B Unclas

G3/15 17482

Prepared for
CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY

25 JULY 1974

Contract No. 953883

TRW
SYSTEMS GROUP

ONE SPACE PARK * REDONDO BEACH, CALIFORNIA 90278

0O11

TABLE OF CONTENTS

Page
1.0 Introduction

1.1 Programmable Digital Electronics 1
1.2 Fault Tolerance 4
1.3 Study Scope 5
1.4 Report Organization 7
1.5 Acknowledgements 9

2.0 General Requirements and Constraints 10
2.1 Functional and Operational Requirements 10

2.1.1 The Reference Mission & Spacecraft 11
2.1.2 Control System Requirements 15

2.2 Design Constraints 26
2.2.1 Life and Reliability 26
2.2.2 Availability & Recovery 28
2.2.3 System Safety 31
2.2,4 Growth Potential 33
2.2.5 System Autonomy 34
2.2.6 Physical 36
2.2.7 Technology 37
2.2.8 Other 38

3.0 Design Considerations and Tradeoffs 40

3.1 Redundancy Policy 41
3.1.1 Element Size Determination 46
3.1.2 Element Control Approach 69
3.1.3 Cross-Strapping Selection 79
3.1.4 Redundancy Management 95

3.2 Control System Design 102
3.2.1 Control System Implementation 102
3.2.2 Functional Redundancy 109
3.2.3 Interface Definition 112
3.2.4 Fail Safe Design 114
3.2.5 Power Interruption 125

3.3 Hardware/Software Requirements 129
3.3.1 Processor/Electronics Functional

Requirements 129
3.3.2 Software Computational Requirements 131
3.3.3 Input/Output Requirements 140

TABLE OF CONTENTS (CONT'D)

3.4 Processor Design 14
3.4.1 Arithmetic 146
3.4.2 Instructions 149
3.4.3 Interrupts 154
3.4.4 Timing 156
3.4.5 External Communication 158
3.4.6 Internal Communication 183
3.4.7 Memories 185
3.4.8 Technology 199
3.4.9 Architecture 204
3.4.10 Micro-Programming 208

3.5 Software Design 210
3.5.1 Software Requirements & Design Criteria 210
3.5.2 Program Organization & Modularity 211
3.5.3 Executive Tradeoffs 217
3.5.4 Reference Software Configuration 225
3.5.5 Diagnostics & Fault Detection 236
3.5.6 Software Sizing 240

3.6 Hardware Fault Detection 244
3.6.1 Error Detecting Coding 244
3.6.2 Self-test 254
3.6.3 Clock Faults 264

3.7 Fault Tolerance, Failure Detection & Recovery 269
3.7.1 Fault Tolerance Criteria 269
3.7.2 Fault Tolerance Requirements 273
3.7.3 Organizational Criteria for Fault

Tolerance 277
3.7.4 Failure Detection Processes 281
3.7.5 Recovery Management Techniques 288
3.7.6 Recovery Implementation 296
3.7.7 Backup Mode Implementation

Alternatives 301
3.7.8 Recommended Approach 305

3.8 LSI Applications 307
3.8.1 Commercial Parts 308
3.8.2 Custom Parts 309
3.8.3 Micro-processors 315
3.8.4 Micro-programming 384

ii

TABLE Of CONTENTS (CONT'D)

4.0 System Description 320
4.1 Current Technology 320

4.1.1 Performance Requirements 321
4.1.2 Processor 325
4.1.3 Peripherals 329

4.2 Advanced Technology 330

5.0 Summary, Conclusions and Recommendations 334

5.1 Summary and Conclusions 334
5.2 Recommendations for Further Studies 337

Bibliography 340

Appendix A - COPE (DPA) Specification separately page numbered

Appendix B - Glossary starting after page- 340

iii

1.0 INTRODUCTION

This report is presented to summarize work done by TRW Systems for Jet

Propulsion Laboratory under contract 26084.00 for a "Fault Tolerant

Programmable Digital Attitude Control Electronics".

To introduce the subject matter of this report, it is needed to consider the

meaning of, need for, and implications of; the phrases "programmable digital

electronics", and "fault tolerant".

1.1 Programmable Digital Electronics

Advanced capability spacecraft attitude control systems are now requiring.

o Multiple operational modes with control laws having unique form and

parameters for each mode.

o Greater accuracy requirements, resulting in increasing control law

complexity.

o Seven to ten year (and longer) life spans with high reliability

(0.9 to 0.95) requirements.

o Multimission capability with minimum redesign for the same hardware.

o Capability of contingency operation to achieve specified operation

with shortened life or degraded operation without shortened life.

o Reduced system development span time.

o Reduced size, weight, power, and cost.

Traditionally, aircraft autopilots and spacecraft attitude control systems

have utilized conventional analog circuitry. More recently , these special

purpose control electronics have been designed using digital circuitry.

Advantages of digital circuitry are:

1

e Sophisticated system functions are often easier to implement.

* Precision can be achieved more readily (e.g., electronic drift and

noise can be eliminated).

* System test and checkout can be accomplished more easily.

* The required redundancy is more readily implemented.

* The hardware analysis tasks are simplified.

Most existing recent spacecraft attitude control systems employ special

purpose digital electronics. In these electronics the implementation is

designed for the specific application, and each individual function is

performed by unique circuitry, in parallel, by a distinct portion of the

electronics. Such designs generally preclude the application of a devel-

oped design to more than one spacecraft. Circuits are usually extensively

replicated (functionally), increasing power and weight.

The increasing demands and complexity have been approximately neutralized

by the rapid advances in integrated circuit technology, and attendant in-

crease in the equivalent functions obtainable in each part as the technol-

ogy has progressed toward LSI (large-scale integration).

The extended lifetimes needed and increasing cost experienced as the level

of integration increases, have shown that a new approach is needed.

Programmable digital electronics offers an attractive and potentially

simpler approach. In such a design, the same circuits are used for all

computations and less total electronics are required. The operation of

these shared circuits is controlled by a stored program, which may be

changed for each application or may be changed prior to or during a flight

mission. Since the control laws are contained in the program (software),

increased flexibility, reduced development span time, and reduced program

development costs can be realized.

Such programmable digital electronics has many characteristics in common

with a general-purpose digital computer; indeed, use of such a computer

as part of a system is one approach. However, considering the spacecraft

2

requirements for attitude control, together with the reliability problem,
the programmable digital electronics, designed specifically to perform
attitude control functions, offers significant advantages.

At this point we shall define the subsystem as being composed of four
types of equipment. These are:

o Sensors

o Actuators

o Peripheral Electronics

o Processor(s)

The sensors consist of all inertial and optical, sensors that provide
spacecraft rate, position, acceleration, etc. sensing for attitude control.
Actuators include thrusters, reaction wheels, CMG's, vectorable engine
controls, and experiment or payload pointing control means.

The processor is the "computer" portion of the control system electronics,
containing the memories, the processing and some I/O (input/output)
capability. The peripheral electronics is all other electronics;
usually that electronics interfacing between the other three types of
equipment.

The use of a processor allows maximum flexibility, in design, in design
confirmation, in making post-design changes, and in modifying the control
system data or program during flight. Several different sets of data
and/or of programs can be stored and used as needed for different modes.

The same processor (with only software changes) can be used for many
different program contracts. If the other equipment is modularly de-
signed, then combinations of sensors, actuators, peripheral electronics
and the one processor can meet any requirements. Program costs are thus
reduced.

The development span time is reduced since hardware redesign and new
development is not needed. The implementation of control laws into
software is not restricted by hardware design time constraints.

3

Besides the savings in parts, the use of a processor also more readily

accomodates the system redundancy necessary to meet the long life require-

ments at high reliability. With lower parts counts, the power, weight

and volume of the system are reduced.

Reliability is a major reason why the processor needs to be developed

specifically for spacecraft attitude control. General purpose computers,

developed to perform functions far more general than those required for

control, do not represent the best approach to achieving high reliability.

In general, these computers are too capable (e.g., memory too large, too

many instructions, too fast, etc.) to achieve optimum control system

application. They also tend to be organized as "reliability monoliths",

defeating efforts to divide them to achieve the redundancy necessary to

meet reliability objectives.

With a proper examination of the requirements, it is possible to design

a processor (and the associated peripheral electronics) that can meet

generalized spacecraft long-life control system requirements. This was

one part of the purpose of the study reported herein.

1.2 Fault Tolerance

Even if the spacecraft attitude control system is designed for long life;

faults or failures can occur, which if not corrected, would cause a

catastrophic ending to the mission (in so far as attitude control is con-

cerned at least).

In many systems (almost all spacecraft systems, to date), the occurance

of a fault has been noted, either in real time or after-the-fact, upon

the ground; and suitable commands are sent to the spacecraft to correct

the fault source, usually by a redundancy reconfiguration. Some time

necessarily elapses in this process.

In many, more ambitious, missions, this elapsed time can not be accepted

due to economic, operational, stability or other constraints. The elimi-

nation of, or drastic reduction in, this elapsed time; and the incorp-

oration of the means by which faults are masked, quickly corrected, etc.

autonomously on-board the spacecraft; is "fault-tolerance".

4

Examples of missions requiring or desiring fault tolerance include:

o Communication satellites, where even momentary loss of communication

capability (pointing) can be serious

- Economically - for commercial ventures

- Security - for military applications

o Military satellites requiring constant pointing and autonomous

operation, even with loss of ground station.

o Spacecraft which are passively unstable and can not be operated for

long without active attitude control and which may be difficult

or impossible to recover from their stable attitude.

o Deep-space probes where the communication times are excessive for

interacti've ground control of redundan:cy, and which have:

- Directive antennas that must be kept pointing at earth.

- Critical operational events, including planetary

encounters, trajectory corrections, etc. that include

the primary mission purpose in a "must-do" span of time.

As will be seen in this report, there are many means that can be employed

to achieve passive or active fault tolerance. However, to achieve fault

tolerance, both the system and (particularly) the processor must be

specifically designed for this feature.

1.3 Study Scope

The scope of this study and of this report can be seen from the contract

statement of work:

"Perform an attitude control electronics mechanization study

to develop a fault tolerant autonomous concept for a three

axis control system with the versatility to fly on different

missions. An existing programmable digital processor should be

used to form part of the attitude control system. The processor

5

should be capable of interfacing with a variety of control

components, e.g. celestial and inertial sensors, hot gas

valves and thrusters, etc. The system should be for plane-

tary space application with a 10 year life period and heavy

emphasis on minimum weight and power. The system shall be

capable of at least performing the minimum functions:

cruise control, powered flight control, two axis articulating

control of science platform, commanded turns, reprogrammable

in flight, etc.

The attitude control system to be studied can be of a hybrid

or a digital programmable control system. It shall consider

the criteria for hardware optimization by the application

of active, cooperative, block, functional redundancy, cross-

strapping circuitry approaches, failure detection techniques,

etc. The effects of an LSI microcomputer in the design shall

be considered.

Provide a Final Report on the analysis, recommendations and

conclusions from the study."

The existing digital processor design chosen to serve as a baseline for

the design studies is the TRW-developed fault tolerant attitude control

processor termed COPE (COntrol Processing Electronics) and sometimes re-

ferred to as "Digital Processor Assembly (DPA)". A combination of TRW

and contract funds has developed two breadboard versions of COPE.

This design is optimum among existing processors in that it was speci-

fically designed for the type of application and approximately the re-

quirements needed for this study. COPE serves as a baseline, with all

tradeoffs of design requirements, implementation, and parameters starting

from the characteristics and features already known.

To aid those unfamiliar with COPE, a specification for it is given in

Appendix A. It should be stressed that this describes the baseline pro-

cessor design. The reasons for this design and possible (and desireable)

variations from it, will be provided in subsequent sections of this report.

6

This report describes not only work done under this study contract, but

includes work previously done at TRW on the same subject.

It should be noted that it was the stated desire of the customer, JPL,

that this report not be influenced by previous work done at JPL, or

their conclusions. The desire was for an independent study, which could

point out new ideas (or confirm old ones), giving a thorough look at a

dynamic subject. In so far as possible, this goal has been accomplished.

Although TRW has been generally aware of the work which has been done

at JPL (as we maintain awareness of all work in this field) we have not

let this influence the study or its conclusions. The tradeoffs and

recommendations reported on herein are solely those of TRW.

1.4 Report Organization

The report is generally organized as follows:

o Section 2 defines the assumed mission, the functional and

operational requirements and the design constraints.

o Section 3 provides the design considerations and tradeoffs,
discussing all viable alternates for each feature or problem
of design of the processor, peripherals, software, etc. This

section is designed to have semi-universal application, well

beyond the more specific mission defined in Section 2.

o Section 4 gives a recommendation for the system design hardware

and its parameters, based both on current technology and more

advanced developments.

o Section 5 provides a report summary, with conclusions and re-

commendations for future studies and hardware development.

Intrinsic in the report is the definition of terms or abbreviations or

acronyms, nominally at the point of first use. A complete glossary is

also included as Appendix B.

7

Although TRW has compiled an extensive library of reports and articles on

the subject, an extensive bibliography and extensive references have been

avoided in this report. A brief bibliography of the most useful and

current papers has been included. Reference in the text (when used) is

by author name.

The difficulty of the comprehensive treatment of such a complex subject,

together with the logical explanation of the elements of the subject and

their tradeoffs must be recognized. Almost every aspect of the require-

ments and the design options are intricately inter-related. The cross-

combinations of all of these variables are astronomical. For these

reasons, a study approach having the following features was adopted:

* Use of a baseline (COPE) processor approach

* Constraint of the mission requirements

* Treatment of each design decision variable as a deviation from the

baseline, as independent as possible from the other design decisions.

* Parameterization of hardware tradeoffs in terms of part count (by

general part type).

* Parameterization of system, program organization, and other soft-

ware tradeoffs in terms of program and/or recovery speed.

* Extensive cross-reference between sections.

* Consistent definition of terms.

It is hoped that the reader will appreciate these features as he reads

this report. It is our hope that this report will serve as a useful

reference on the subject. The intent is to provide the information

necessary so that intelligent system-level decisions can be made on the

design and organization of fault-tolerant, programmable attitude control

systems.

8

1.5 Acknowledgements

The principle authors of this report, and participants in the.study were:

A. A. Sorensen, Study Manager & editor

J. H. Decanni

A. M. Frew

J. F. Gregory

Other contributors included:

T. C. Alsbury

T. C. Berg

K. H. O'Keefe

Reviewers of the drafts were:

A. E. Sabroff

D. J. Spencer

W. L. Graves

Others, doing earlier work on the development of COPE, included:

J. D. Elbert

L. R. Keranen

P. F. Smitha

J. M. Bordyn

A special thanks is due to M. J. Burton and G. Walton for their
long hours of typing and proofreading.

9

2.0 GENERAL REQUIREMENTS AND CONSTRAINTS

Fault tolerance and autonomy are two important features required in

long-range interplanetary spacecraft systems for the purposes of preventing

the occurrence of irreparable failures and precluding reparable failures

from causing defaults in critical system functions.

Requirements and constraints influencing the specification and design

of fault tolerance and autonomy capabilities derive from

* Characteristics of the interface between real-time spacecraft subsys-

tems and the ground control organization.

* The criticality of potential failures in relation to their consequences

on spacecraft safety and operational success within the time interval

from the occurrence of a fault to the successful completion of correc-

tive action.

Therefore, the definition of representative mission requirements and space-

craft system configurations is an essential step to the determination of

realistic and pertinent design criteria.

The attitude control system configuration selected as a reference for

the study must include features that are common to or compatible with most

potential inter-planetary missions for the future. Its hardware/software

structure should be modular; this provides cost effective adaptability to

the specific requirements of each particular mission.

2.1 Functional and Operational Requirements

Representative attitude control requirements, used in defining the

reference control system configuration, have been derived on the assumption

of a multiple outer planet fly-by mission including a Saturn swing-by. How-

ever, criteria for the definition of essential features and growth capa-

bilities of the reference configuration include results of an assessment of

the control requirements imposed by other long-life missions such as outer

planet probe buses and orbiters.

Outbound missions have received preferential attention because of their

more extended life and autonomy requirements, compared to inbound missions,

which differ primarily in power sources, thermal environment, and communi-

cation requirements.

10

2.1.1 The Reference Mission and Spacecraft

A multiple outer planet fly-by, including a Jupiter or Saturn swing-by,
is a representative example of a long-life mission for which mission planning
and some flight data are available. The scientific objectives of the mission
assumed for the study are the exploration of the atmospheres of planets
such as Saturn and.Uranus, the near space environment of these planets and
the interplanetary space from Earth. The positions of Saturn, Uranus and

Jupiter are favorable for launches in the 1979-1980 windows.

It is appropriate to note that, with both Saturn and Uranus as target
planets, it is Uranus which imposes the more stringent requirements on the
system design. The major areas so affected are mission lifetime (arrival

at Uranus is about seven years after launch), communications capability

(1024 bps telemetry rate with 64-meter antenna), propellant requirements,

and onboard navigation requirements.

A unique characteristic of the assumed spacecraft is the use of RTG's
as the primary source of electrical power. The communications round trip
times at planet encounters are from 2 to 4 times longer than in the Pioneer
10 and 11 Jupiter fly-by. The delay is 2.6 hours at Saturn and 5.4 hours
at Uranus. This imposes a significant constraint on command and verifica-
tion sequences and requires provision of automatic backup modes aboard the
spacecraft which are of interest to the study.

Unlike the Pioneer missions whilch. can be controlled with sufficient

accuracy by radio guidance from the Earth, a mission to Uranus via Saturn
would be too inaccurate without the use of an additional onboard sensor.
This is essentially a star sensor which uses stars and bright satellites

of the target planets for optical navigation fixes.

The scientific payload includes equipment for particles-and-fields

measurements and remote observation of physical properties of the atmospheres
and other characteristics of Saturn and Uranus. There is a visual imaging
system, mounted on a scan platform together with other instruments requir-
ing gimballing, which function to provide global views of the planets dur-
ing the approach phase, obtaining partial views at high resolutions during

encounter, and making observations of satellites during the fly-bys. Also,
dual-frequency radio occultation experiments will be performed by means of

11

the dual X-S band communication system of the spacecraft.

An X-band communication system is required to meet telemetry perform-

ance requirements at the target planets. Telemetry rates of 2048 and 1024

bps are assumed at Saturn and Uranus encounters, respectively. An S-band,

backup down-link capability is needed to support tracking and telemetry

operations during initial mission phases, to provide communications over a

wider range of attitude errors (or pointing angles) than with X-band, and

to permit routine data acquisition from the DSN 26-meter network. The high-

gain antenna consists of a 2.75-meter (9-foot)-dia. paraboloidal reflector
and a dual S- and X-band feed. This antenna is fixed to the spacecraft

structure and looks in the positive roll axis direction. Command access

to the spacecraft, regardless of the vehicle attitude, is guaranteed over

a limited range of distances by a medium-gain horn and a conical-log spiral

antenna coupled to the S-band transmitter/receiver by means of a diplexer

coupler.

Spacecraft telemetry functions are managed by the data handling system,

which has real time and storage capabilities. Assumed control system sampl-

ing rates and data formats are described in Section 3.4.5

'Commands are processed by the command system which demodulates the
FSK subcarrier signal from the receiver and verifies the validity of each

command received. The command interface with the control system is dis-

cussed in Section 3.4.5.

,In addition to providing three-axis stabilization to the spacecraft,

the control system has capabilities to establish any desired orientation

(compatible with thermal and sensor field-of-view constraints) and control

the attitude during propulsive maneuvers. In addition to attitude control

functions, the control system controls the duration of propulsion firings

and provides actuation signals to the scan platform drives and attitude

data and gimballing programs to science experiments. More detailed control

system requirements and functions are discussed in the next section.

The following are brief descriptions of the assumed sequence of events and
operational regimes:

* Launch - The first flight spacecraft is launched in November 1979.

Arrival at Saturn is scheduled for April 1983 (3.4 years later) and

12

Uranus encounter occurs in October 1986. Other flight spacecraft are

launched in the next Saturn opportunity (November-December 1980) to

perform more advanced missions (probe deployments and orbiters). The

launch vehicle assumed is a Titan 3E/Centaur/TE-364-4 and the launch

site is at Cape Kennedy. The nominal payload capability of the booster

is approximately 455 Kg (1000 pounds). Spin stabilization is used

during TE-364-4 burn.

o Separation from Booster, Despin, and Attitude Acquisition - At TE-364-4

burnout, the spacecraft separates from the booster by means of a spring

release mechanism. This event is initiated by the spacecraft sequencer.

A separation switch activates a despin maneuver, which is the first in

the sequence of operations for attitude acquisition. The spin rate is

sensed by an Inertial Reference Unit (IRU) which, through the control

electronics, operates the Reaction Control Subsystem (RCS) thrusters

until the final rate is less than 1-5 degrees/second. Upon completion

of the despin maneuver, RTG's and appendages are deployed and the control

system executes the Sun and Canopus acquisition sequences.

o Sun-Pointing Cruise - During the first 50 days of the cruise phase, the

spacecraft roll axis is pointed directly at the Sun to minimize thermal

control requirements. Communications are established through the

medium-gain and omni antennas. Three-axis stabilization is by means of a

Reaction Wheel Assembly (RWA). The RCS thrusters are used for wheel

momentum unloading when necessary.

o Trajectory Correction Maneuvers - Trajectory corrections are executed

on days 5 and 20 after launch, 8 days before Saturn encounter, 40 days

after Saturn swing-by, and 10 and 2 days before Uranus encounter. The

spacecraft is reoriented in the desired thrust direction before execu-

tion. During propulsion, the attitude of the spacecraft is controlled

by a jet-vane thrust-vector-control (TVC) system and the roll RCS

thrusters. Attitude references are provided by the IRU, which also

controls the duration of the firings. Upon completion of each AV

maneuver, the control electronics returns the spacecraft to the Sun or

Earth pointing orientation by means of the RCS thrusters.

18.

Earth-Pointing Cruise - After 50 days from launch, the spacecraft

assumes an Earth-pointing orientation to allow communications with the

high-gain antenna. For routine telemetry operations, S-band provides

32 bps to a distance of 6 AU (on the 26-m system) and 256 bps at

Saturn on the 64-m antenna. X-band is used for special events requir-

ing higher data rates.

Saturn Approach and Encounter - Accurate control of the fly-by distance

is essential for reducing trajectory correction AV requirements. An

optical sensor is used to reduce trajectory determination errors to

less than 100 km. Titan is a potential navigational reference, whose

position can be measured (by a star sensor) relative to several stars.

Navigational fixes are needed from 20 to 10 days before encounter and

during the first 20 days after the swing-by. Scientific observations

are made within + 10 days from Saturn encounter. Crossing the ring

plane at distances of 2.3 to 2.7 Rs could present a definite hazard to

spacecraft survival.

The sequence of operations is very rapid. Wide-angle high-resolution

imaging starts a few hours before periapsis. Ring plane crossing

occurs in about one hour after closest approach (ring plane survey and

RF ring occultation begins). The eclipse and occultation period starts

2 hours after periapsis crossing and lasts 2.4 hours (during which RF

occultation experiments and dark side observations are made). Planet

environment observations and the ring plane survey continue for several

hours after periapsis. Ring occultation lasts approximately 6 hours.

Saturn to Uranus Cruise - Another sequence of navigation fixes will

occur during the first 20 days after the swing-by. A departure tra-

jectory correction will be executed about 40 days after Saturn en-

counter. The total Saturn-to-Uranus cruise time is 3.8 years and the

operational modes are as in the Earth-to-Saturn cruise. S-band

telemetry rates are 64 bps (to 14 AU) and 32 bps (to Uranus), using

the 64-m DSN antennas. A 1024 bps rate is available up to Uranus on

X-band.

* Uranus Approach and Encounter - Navigational observations are required

for trajectory corrections to be executed 10 and 2 days before

14

encounter. By using Titania as a target, and assuming the most effi-

cient estimation techniques available are applied, the residual navi-

gation error is 1200km (I a) 20 days before encounter (if the sampling

rate is 4 samples per day). At 24 samples per day the error reduces

to 500 km. Careful planning of the arrival date at Uranus is required

to avoid constraints due to inaccessibility of Titania for navigational

fixes. Except for ring observations and potential ring plane penetra-

tion effects, encounter operations at Uranus are similar to Saturn's.

o Post Encounter Phase - Normal cruise operations are resumed to extend

the mission as far as possible to the outer regions of the heliosphere.

Three years after passing Uranus the spacecraft will be at a distance

of 30 AU from the Sun and, theoretically, it can continue transmitting

data at rates of at least 16 bps up to distances of the order of 80 AU.

2.1.2 Control System Requirements

In the reference mission described in Section 2.1.1, the control system
performs the following functions:

o Initial despin

o Sun acquisition

o Canopus search and acquisition

o Cruise attitude determination and control

o Sun/Canopus reacquisition

o Re-orientation maneuvers

o AV impulse and TVC attitude control

o Navigation data acquisition and conditioning

o Encounter attitude determination and control

o Scan platform control

Description of requirements associated with these functions are given in

Section 2.1.2.2. where control modes are discussed.

2.1.2.1 Sensors and Actuators

The control system configuration selected as a reference for the study

is as shown in the simplified block diagram of Figure 2-1, where redundancies

are not included for simplicity.

The wide angle Sun Sensor (WASS) consists of two subassemblies, mounted

15

Pitch
+X Yaw

Wide * RCS

Angle Thrusters
Sun Pitch

Sensor X Yaw ()

Pitch

Pitch Pitch Jet
Fine Vane

Sun Elect. Actuators
Yaw

Sensor Yaw Yaw

CONTROL

ELECTRONICS

Azimuth
Star Optics Roll Scan

Tracker and Elect. Platform
Assembly Detector Pitch Elevation Actuators

Gyros

Inertial (4) Reaction
Reference Elect. Wheel
Unit Acceler- Assembly

ometer (4)

Figure 2-1 Reference Control System Configuration

16

on opposite sides of the spacecraft, providing a combined FOV of 41T sterad.

Each subassembly includes four sets of redundant detectors. Each detector

includes two square solar cells and a shade configured to restrict the FOV

to a region slightly greater than a spherical quadrant. The output signal

from each of the four pairs of cells is a bipolar voltage approximately

proportional to the cosine of the angle of incidence of the solar radiation.

The WASS provides coarse pitch and yaw attitude data for sun acquisiton and

reacquisition and backup failure detection.

The fine sun sensor (FSS) consists of two single-axis digital sun

angle detectors and the associated electronics. Two-axis attitude data are

provided over a 100 x 100-degree FOV with an average resolution of 1/28

degree and quantum transition accuracies of + 0.05 deg. The FOV assumed

exceeds the required values to accommodate the range of sun cone angles

typically found in Earth-Saturn trajectories (i.e.: + 30 deg after 50 DAL).

Measurement accuracies are sufficient to meet X-band antenna pointing re-

quirements at Uranus. For resolutions finer than 1/8 deg, the minimum

electronics required at the sensor consists of one amplifier, with variable

threshold, for each coarse bit. The coarse angle data output is Gray coded.

Four quadrature (sine-cosine) fine bit outputs are provided for external

interpolation. Serial digital data output interfaces are required.

The star tracker assembly (STA) is a strapped down unit consisting of

an optical system, an image dissector tube, and the associated electronics.

The STA provides a roll reference, relative to Canopus, during cruise and

supplies navigation data (for ground data processing) near the target

planets. Requirements are determined by the guidance references, since

preliminary estimates indicate a 4th magnitude detection sensitivity is

needed and the accuracies for single-point source measurements should be:

2-3 arc sec (bias), 4-9 arc sec (noise).

'The inertial reference unit (IRU) comprises a set of four non-orthogonal

RIG's, an accelerometer and related electronics. A redundant, non-orthogonal

gyro configuration has been selected because it provide an economical, in-

line failure detection capability when all four gyros are operational.

The accelerometer has its input axis parallel to the spacecraft roll axis

to provide acceleration data during velocity correction maneuvers. Th.ese

17

are used to derive measures of velocity increments with which the durations

of the firings are controlled. The accelerometer may also be redundant.

A monopropellant-hydrazine reaction control system (RCS) provides

control torques for acquisition,reacquisition, momentum unloading, maneuvers,

and overriding the reaction wheels in cases of emergency. The RCS comprises

a set of 12 to 16 catalytic thrusters (with the corresponding valves), the

propellant tanks, four solenoid-actuated latching valves, two filters, two

N2H4 fill valves, two N2 fill valves and two sets of propellant lines. The

system is organized in two separate banks of thrusters which can be fed by

either one of the propellant tanks. Propellant expulsion is forced by

bladders pressurized by nitrogen gas. The thrusters provide thrust levels

on the order of 0.5 N and, when the two banks are active, pure couples

about each one of the control axes can be developed. Included in the RCS,

but not shown in Figure 2-1, are the axial thrusters (provided with two-

axis, jet-vane TVC equipment) and the associated hardware. The jet-vane

actuators are limited-travel, spring-restrained DC torque motors provided

with LDT shaft angle transducers. When the motors are de-energized, the

jet vanes automatically return to their central positions. Limit switches

provide redundant indication of hard-over driving conditions. Each axial

thruster develops a nominal thrust level of about 45 N and is aligned so

that the undeflected thrust vector passes through the mean CM location.

Two actuators are required per thruster to provide pitch and yaw thrust

vector deflections.

Azimuth and elevation scan platform axes are driven by geared stepper

motors. Reductions include conventional gears and a harmonic drive to pro-

duce output shaft rotations in the range from 0.02 to 0.05 deg per step.

Shaft position indication is provided by a multi-speed resolver. Limit

stops are provided so that redundant position information can be derived

by counting actuator pulses. Maximum slewing rates in the range from 1 to

2.5 deg/sec are obtainable.

The reaction wheel assembly (RWA) consists of a set of four non-

orthogonal reaction wheels. Functional redundancy is provided in the sense

that any combination of three wheels can be used for full three-axis control.

All wheels are identical, with maximum capacities in the range from 1 to 6

Joule-sec. The wheels are driven by two-phase induction motors developing

18

peak torques on the order of 0.15 N-m over the operating speed range.

2.1.2.2 Modes

In various operating regimes of the mission there are control system

functions which have similar characteristics and, thus, can be implemented

by means of a single mode. Each mode entails a particular sequence of

operations using a specific, combination of sensors and actuators. The

following modes will be implemented.

o Standby

The control system is in a quiescent state in which only command and

telemetry functions are performed. This mode, initiated or terminated

by ground command, is normally used during preflight operations and

through launch phases prior to separation of the spacecraft from the

upper booster stage.

o Despin

At TE-364-4 stage burnout the spacecraft spins at 60 rpm about the roll

axis. Upon receipt of a signal from the separation switch, the control

system initiates the despin maneuver. The roll thrusters are operated

until the roll rate is reduced to a preselected value in the 1-to-5

degree/second range. During despin, rate information is provided by

the IRU, which is activated by the spacecraft sequencer, prior to

separation from the boster, to allow sufficient time for gyro spin-up.

Breakdown of the despin maneuver into two or three partial despin and

nutation damping operations may be required to limit transversal rate

growth due to misalignments and/or mass property anomalies.

o Acquisition

After deployment of the RTG's, magnetometer boom, and other appendages,

the spacecraft sequencer commands the control system to start acquisi-

tion maneuvers. Sun acquisition begins with activation of the roll

attitude control loop for reducing the roll rate to a value comprised

within a predetermined deadband. The IRU provides roll rate informa-

tion and torques are produced by the RCS thrusters in response to

signals developed by the control system electronics. After the roll

rate is within the deadband over a specified time interval, the pitch

19

and yaw control loops are activated to proceed with the sun acquisition.

Sun attitude information is supplied by the wide angle sun sensor and

control torques are developed by the pitch and yaw thrusters. During

the entire acquisition maneuver the roll channel maintains the roll

rate within its specified deadband. As soon as the sun pointing error

is reduced to an amplitude within the acquisition deadband, the pitch

and yaw loops are switched automatically (by the control electronics)

to operation with the two-axis Fine Sun Sensor (FSS) and the control

deadband is reduced to a smaller preselected value.

The Canopus search and acquisition sequence is initiated automatically

by the control electronics, following sun acquisition. If desired, the

automatic sequence can be overridden by ground command, and acquisition

can be executed under control by the ground software on the basis of

telemetry data provided by the control electronics. In the automatic

mode, the control electronics commands the RCS thrusters to establish

a preselected roll rate (in the 1-5 degree/second range) while the

pitch and yaw control loops maintain the Sun pointing orientation.

Roll rate information is provided by the IRU and pitch and yaw point-

ing error signals are obtained from the fine sun sensor. The Star

Tracker Assembly (STA).operates in the acquisition mode, providing

star crossing and star magnitude data to the control electronics for

either onboard processing or telemetry to the ground. When Canopus

enters the FOV of the STA, the roll search is terminated and roll axis

control is switched to the normal pointing mode, with error signals

provided by the STA.

* Celestial Pointing

This mode can be entered either automatically, by a discrete event

timer command from the control electronics, or by either sequencer or

ground command. Pitch and yaw pointing error data are provided by the

FSS and a roll reference is obtained from the STA, which is nominally

locked on Canopus. Control torques about all three spacecraft axes

are provided by the RWA. The RCS thrusters operate automatically for

either momentum desaturation or overriding the RWA if pointing errors

exceed pre-established deadbands. After 50 days from launch, the

spacecraft is transferred from the Sun-pointing to the Earth-pointing

mode for starting communications with the high-gain antenna. The yaw

20

and pitch control loops are biased to account for the Sun-Earth-

Canopus-spacecraft geometry. These biases are functions of time

generated by the control electronics on the basis of stored parameters,

adjustable by ground command and sequencer timing inputs. Pointing

accuracy requirements during cruise depend on communications ERP con-

straints, operating frequency, and antenna characteristics. Assuming

a requirement to point at Earth within 10% of the half-power beamwidth,

the corresponding attitude errors are 0.3 degree for S-band and 0.13

degree for X-band.

o Inertial Pointing

Re-orientation maneuvers are required during cruise for scientific

observations and terminal guidance. Also, for performing trajectory

corrections the spacecraft has to point with the roll axis in the

desired direction of thrust. Re-orientations are performed on the

basis of a program, stored in the control electronics, which is

adjustable by gro.und command. A typical sequence includes a space-

craft rotation to the desired orientation, execution of programmed

events, and return to the Earth-pointing attitude. A three-axis atti-

tude reference is provided by the IRU and control torques are developed

by the RWA and the RCS thrusters. For thermal reasons, maneuvers with-

in the first 50 to 100 days of flight are constrained to keep the Sun

in the + x hemisphere.

The control electronics also controls the durations of the firings by

integrating an accelerometer signal provided by the IRU and comparing

the resulting velocity change estimation against a stored limiting

value input by ground command.

Guidance data are acquired by pointing the STA in specific directions

so that the selected planet satellites and reference stars fall within

the FOV of the instrument. These operations require a sequence of

maneuvers (i.e., spacecraft rotations ranging from 70 to 110 degrees)

programmed by the control electronics as for trajectory corrections.

An essential requirement during data collection is that the spacecraft

rates should not exceed a few degrees per second. During observation

periods the control electronics samples the STA and. IRU output signals,

21

performs formatting operations, and outputs the resulting data for

storage in the Data Handling Subsystem's memory for telemetry to the

Earth after returning to the Earth pointing orientation. High resolu-

tion imaging and other scientific experiments also require stabiliza-

tion with low rates. In addition, eclipses and interference due to

planet albedos may either prevent or significantly restrict the use of

optical sensors during critical phases of the fly-bys.

During encounter operations, attitude references will be provided by

the IRU. Drift corrections will be computed by the control electronics

on the basis of star data obtained from the STA. Planet interference

(and critical shading requirements) can be avoided by operating with

stars more compatible with viewing constraints than Canopus (if neces-

sary). Spacecraft maneuvers may be required to provide adequate look

angles to both the experiments and the STA.

* Thrust Vector Control

Pitch and yaw attitude control during axial engine firings is perfoirmed

by means of a jet-vane thrust vector control system. Roll torques are

provided by the RCS thrusters to prevent the roll attitude errors from

exceeding a pre-established deadband. The RCS deadband is wider than

the ones used in the celestial and inertial pointing modes.

In addition to the functions included in the six primary operation modes

described above, the control system is programmed to perform the following

functions upon demand:

* Sun/Canopus Reacquisition - Sun reacquisition is initiated by confirmed

loss of the fine Sun reference and is executed by means of the RCS

thrusters. The same initiation and execution criteria apply to Canopus

reacquisition, which differs from initial acquisition in the search

strategy (which covers a smaller region for fast recovery).

* Attitude Determination During Cruise - FSS and STA data samples, at

the rates required by scientific experiments, are processed and pro-

vided to telemetry in response to ground or sequencer commands.

* Attitude Determination During Encounter Operations

FSS, STA, and IRU gyro data samples are provided to telemetry. Sampling

22

rates are adjusted to meet the requirements imposed by scientific

experiments.

o Scan Platform Control

The control electronics generates signals for driving the scan platform

actuators to either fixed preselected positions or to follow desired

scan profiles preprogrammed by ground command.

o Support to Science Paayload and Other Subsystems

Discrete event timing (related to maneuvers or control sensor observa-

tions) and attitude and gimbal angle data are provided to the scientific

experiments. Also, preprogrammed gimbal command profiles are supplied

to experiments including individual gimballing equipment.

Limited backup data processing can be provided in the event of data

handling system failures.

o Test and Checkout

This function is used during integration and testing and preflight

checkout. The control electronics interfaces directly with ground

test equipment for performance verification and other system and sub-

system tests.

o Housekeeping

This is an automatic monitoring function providing instrumentation and

diagnostic data to telemetry, from which performance of the equipment

can be analyzed and detailed diagnostics of failed units can be made

by the ground software.

2.1.2.3 Ground Support Capability

The ground terminal for flight operations is provided by the NASA Deep

Space Network (DSN), which utilizes stations covering several longitude

bands. At the time the reference mission is flown, there will be complete

networks of three or more stations (approximately 120-degree spacing) with

both 26- and 64-meter antennas and the capabilities will be as follows:

23

Antenna Station

Diameter Locations Uplink Downlink

26 m California S-band, up S-band
Australia to 10 kW. 2500 bps (uncoded)
Spain 1 to 10 sps with 2500 bps (block)
South Africa either FSK or PSK 2048 bps (conv.)

64 m California S-band, up to S- and X-bands
Austrailia 400 kW. Same 33 kbps (uncoded)
Spain rates as above 33 kbps (block)

2048 bps (conv.)

Ground station support can be available up to 24 hours a day if

necessary. However, during the cruise phases, coverage may be reduced down

to a few hours per week. The 26-meter stations have redundant facilities

which can provide non-interrupted S-band support.

Spacecraft telemetry is managed by the data handling system in either

real time or via mass memory storage. Downlink data rates available vary

from 16 to 2048 bps.

The data handling system provides several format options for science

and engineering, all selectable by ground command. The choice of science

format depends on data rate required (e.g.: cruise, encounter, imaging) and

data source (i.e.: real time, mass storage). In addition to the regular

cruise and encounter engineering formats, there are formats available for

accelerating portions of the engineering subcommutator channel to the main

frame. As usual, the main frame includes control and synchronization data,

fixed words, and the engineering and science subcommutated data.

The command system can provide serial, discrete pulse, and discrete

level commands. The command format includes a preamble, a synch bit, address

bits, the command message, and parity check bits. Command messages are

typically from 8 to 16 bits long.

Assuming 8-bit command messages, a typical command word size may be

22 bits long. As a rate of 10 bps for the uplink, the maximum average data

rate input to the control system will be about 3.6 bps.

24

In addition to real-time command processing, the command system in-

cludes a memory and logic for executing stored commands at predetermined

intervals.

2.1.2.4 Miscellaneous

Round-trip communication times are 8.306 minutes per AU. This makes

interactive operations with the ground very difficult when the spacecraft

is close to the target planets. For instance, command verification requires

1.44 hours from Jupiter, 2.64 hours from Saturn, and 5.31 hours from

Uranus.

Radiation environments of the outer planets are potential sources of

failures in the electronic equipment. Electron and proton fluxes are
entirely due to the planetary radiation belts. Pioneers 10 and 11 were

designed for fluences of 5 x 1010 electrons/cm2 (5-100 MeV) and 5 x 1010

protons/cm2 (0.1-4 MeV). For a Jupiter swing-by mission, maximum esti-

mated fluences (based on SP-8091) are 1.5 x 1011 electrons/cm2 (1-10 MeV)
and 3 x 1010 protons/cm2 (2-100 MeV). These fluences were determined by

integrating fluxes along fly-by trajectories approaching planet centers
within 2.3 Rs and 3 R .

The existance of radiation belts at Saturn and Uranus has been

postulated based on the observation of UHF radio emissions and on the

assumption that the mechanism producing radiation belts is similar to

Jupiter's. However, as discussed in the Design Criteria Documents NASA

SP-8091 and SP-8103, it is plausible that the densities, fluxes, and

energies are much weaker than at Jupiter. With fly-by distances of 2.3 to

2.75 Rs and 4 Ru it is unlikely that radiation belt exposure should present

a significant hazard to the spacecraft.

Micrometeoroid impacts during the crossing of the plane of Saturn's
rings is a matter of concern regarding spacecraft survival. A preliminary

estimate of an upper bound of the integrated flux of particles of various
sizes was obtained based on the current model of particle flux density in

Saturn's range (SP-8091). Results are given in the following table:

25

Min. Particle Radius (cm) Min. Particle Mass [g] No. of Impacts

0.1 0.0042 4.7

0.133 0.01 3.1

0.287 0.1 0.96

0.62 1.0 0.31

An exposed area of about 1.9 m 2 was assumed, with the vehicle's relative

velocity (11.4 km/sec) included relative to the ring particles velocity

vector such that particles enter the vehicle from the rear, at an angle of

45 deg from the -X axis.

2.2 Design Constraints

2.2.1 Life and Reliability

The spacecraft systems must be designed with all expendables and known

wearout phenomena sized for 10 years. Although there may be some unanswered

questions which require additonal study, these do not appear to be unmanage-

able problems at this time.

For instance, the star trackers may be subject to lens fogging (from

long-term space radiation) and image dissector tube degradation. None of

these are felt to be serious problems because integrated solar radiation

and electron and proton fluences are either comparable to or lower than

Pioneers 10 and 11 and 10-year lives are within the state of the art of

dissector tubes.

There may be some concern about possible degradation of seals and

valve seats in the thruster assemblies. However, hydrazine thrusters have

demonstrated 500,000 pulse lives without leakage. Typical numbers of

pulses for the reference mission will be in the 10,000 to 30,000 range.

Proper thermal control will provide assurance of seal/seat integrity.

Catalyst bed degradation from cold starts can be a more serious prob-

lem since typical design lives are on the order of 150 cold starts. Ex-

tension of this limit to several thousand cold starts has been achieved by

means of heaters. Either resistive or radioisotope heaters can be used.

26

Sun sensors include silicon solar cells or other photosensitive ele-
ments which can be degraded by exposure to electron and proton fluxes.
Experience with Pioneer 10 shows this is no problem.

The primary source of concern from the reliability standpoint is the
10-year lifetime requirement. This is about four times the design life for
.Pioneers 10 and 11. In the reference mission, reasons for concern are
mitigated by the following factors:

o Integrated exposure to solar originated environments is not increased
due to inverse square-law effects.

o The worst expected radiation dosage is due to passage through the
Jovian radiation belts.

o The extended part of the mission entails a relatively more benign
environment in terms of temperature extremes and anticipated micro-
meteroid flux.

o Failures not related to depletion or wearout factors should have
lower incidence rates during the extended part of the mission.

The reliability problem associated with 10-year mission lifetimes is
shown by Table 2-1, which is based on Pioneer 10/11 reliability models,
with extensions of the same failure rates to 10 years:

Table 2-1 Pioneer 10/11 Spacecraft Reliability (for 10 years)

Spacecraft System Reliability

Structures and Ordnance .9943
Thermal .9971

Propulsion .9112

Attitude Control .8035

Data Handling. .6131

Antennas .9673

Communications .7676
Power .9419

Command Distribution .7835

TOTAL SPACECRAFT .2439

27

The average system reliability is 0.8549 but the total spacecraft reliability

is an unacceptable 0.2439. This extension is probably unduly pessimistic,

because failure rates are based on data for shorter missions, including a

number of earth-orbiting spacecraft programs. Thus, infant failures and

failures in the temperature-cycling earth-orbit environment tend to produce

failure rates which are too high for a long mission with an unchanging en-

vironment. The 0.2439 figure is neither a realistic nor an acceptable esti-

mate of the probability of mission success. Nevertheless, the calculations

point out which are the design areas where reliability augmentation would

be comparatively most effective.

Reliability requirements for the control system depend on the re-

liability goal established for the entire spacecraft and the reliability

allocations to other systems. Curve A in Figure 2-2 shows system reliabil-

ity requirements and the assumption that all system reliability allocations

are equal. Curve B corresponds to the case where the structure, thermal,

antenna, and power systems.have a combined reliability of 0.93 and the

remaining systems have equal reliability allocations. Curve C was obtained

assuming the control, propulsion, and data handling systems have equal

reliabilities and the rest of the system has a reliability of 0.6524.

Typically, overall spacecraft reliability requirements must be in the

0.5 to 0.6 range (or better). As shown by the shaded area in Figure 2-2,

control system reliabilities in the range from 0.88 to 0.94 will be required

for meeting this system reliability objective.

2.2.2 Availability and Recovery

The first problem to be considered in the design of a fault tolerant

control system is the determination of the maximum time that the system

can be allowed to be down without compromising the safety of the space-

craft or causing operational mission failures. The spacecraft can be

physically endangered when:

* The propulsion system is allowed to cause excessively high rotational

rates.

* The thermal control system is subjected to damaging heat inputs as a

result of prolonged exposure to the sun (during the early part of the

interplanetary cruise).

28

AVERAGE
SYSTEM
RELIABILITY

1.0

.8

SPACECRAFT RELIABILITY

.7

0 .2 .4 6 .8 1.0

Figure 2-2. System Reliability Requirements

29

Operational mission failures can be caused by

* Loss of communications due to failure of the control system to return

the spacecraft to a stable Earth (or Sun) pointing condition after

off-pointing maneuvers. This can be caused by either excessive space-

craft rates preventing acquisition, or by failures causing stable

pointing in unscheduled directions.

* Excessive propellant leakage caused by failures resulting in open

valves.

* Excessive midcourse velocity correction magnitudes due to engine

cut-off timing failures.

* Failures to point spacecraft/scan platform correctly (during critical

encounter phases) producing losses of scientific data.

In normal mode (cruise) conditions, attitude control is accomplished by

means of reaction wheel torquing. Assuming wheel motor torques on the

order of 10 in-oz and minimum spacecraft moments of inertia of 350 slug-

ft2, the acceleration caused by a hard-over wheel drive failure would be

8.5 x 10- 3 deg/sec 2. Assuming a wheel saturation momentum of 1 ft-lb-sec,

the maximum spacecraft rate of 0.16 deg/sec can be attained in 192 sec,

at the end of which the angular travel would be about 157 deg. If the fine

sun sensor has a FOV of 400 x 400, the time it takes to go from the optical

axis to a FOV edge is 69 sec. Consequently, a recovery time on the order

of 30 seconds is probably sufficient to handle wheel drive hard-over

failures. The worst that can happen after recovery is a reacquisition by

means of the RCS thrusters.

If a failure in the ACS electronics causes an RCS thruster or pair of

thrusters to fire continuously, the resulting spacecraft rotational

velocity is not bounded, as in the reaction wheel case, but increases

linearly with firing time. Assuming a thrust level of 0.1 lbs and a

moment area of 8 ft, the acceleration caused by a constant couple if 0.13

deg/sec 2 . A rate of 10 deg/sec can be attained in about 77 sec. The FOV

of the fine Sun Sensor will be left in less than 18 sec. Recovery times

no greater than 9 sec are desirable to permit reacquisition within the

fine sun sensor FOV (initial sun pointing condition assumed with zero bias.)

30

During velocity correction maneuvers, shorter recovery times are required
due to the higher bandwidths and control torques involved. With a space-
craft weight of 1000 lbs and a thrust level of 10 Ibs, the firing time for

a 164 ft/sec velocity maneuver is 8.5 min. If the moment arm is 4 ft, the

torque produced by a 5-deg thrust vector deflection is about 3.5 ft-lbs,

more than 4 times greater than the assumed attitude control thruster torques.
The corresponding acceleration will be 0.57 deg/sec2. Rotational rates of

10 deg/sec can be attained in 17.5 sec and attitude errors greater than 2

deg will be developed in less than 3 sec. In this case, recovery times

on the order of 1 sec or shorter are desirable to prevent the development
of dispersion errors requiring additional or larger correction maneuvers.

Scan platform actuators of the incremental type operate with step rates
typically ranging from 0.02 to 0.05 deg. Assuming a maximum stepping rate
of 50/sec, the corresponding slew rates will be from 1 to 2.5 deg/sec.
Recovery time requirements imposed by scientific experiments are not be-
lieved to be critical unless there is equipment that can be damaged by
accidental exposure to particles and fields without protection. If un-
controlled slewing is to be limited to + 30 deg per axis for this reason,
recovery times should not be greater than about 10 sec.

The preceding discussion shows that, in the assumed interplanetary mission,
failure recovery is not required to take place faster than within about
1 sec.

The essential problem is to implement a failure detection and recovery

concept that can function reliably without ground intervention. Autonomy
is more important, in this class of applications, than speed of recovery.

2.2.3 System Safety

The safety of the spacecraft can be compromised by either hard-over
failures resulting in prolonged actuator operation or by unscheduled inter-
ruptions of the attitude control functions causing either excessive heat

inputs or damaging exposure of systems and components to environmental

radiation over extended periods of time.

For safety, the following fail-safe design policies should be
observed:

31

e The spacecraft systems should be designed with appropriate redundancy,

workarounds and backup capabilities which will eliminate as many elec-

tronic, mechanical, and electromechanical failure modes as sources

of spacecraft failure as practical. When redundancy or backups are

employed, circuits, interfaces between units, and switching circuits

should be designed with fault isolation so that a failure in one

unit does not propagage into, or does not interfere with the opera-

tion of, the redundant units or backup modes.

* The spacecraft systems should be designed so that they can survive

failures occurring when the spacecraft is not being monitored by the

ground, since those that occur in deep space require long periods for

telemetry detection, problem diagnosis and corrective command

transmission.

* Electrical or electromechanical random single-point failures should

be eliminated from equipment which must successfully operate at a

high duty cycle throughout the mission, and from equipment which is

especially critical to the success of the mission. For the purposes

of this single-point failure criteria, failure or degradation from

predictable wearout should not be regarded as random, and the design

should be capable of surviving a single-random failure in addition

to expected wearout failures.

* Failures in the control electronics should not cause hard-over con-

ditions or prolonged operation of the actuators. Long duration

thruster firings should require a sequence of turn-on commands instead

of commands for turn-on and turn-off.

* In the absence of control signals, TVC actuators should return to

centerline positions.

* Reaction wheel control should be overridden by RCS thrusters when

control errors exceed predetermined tolerances.

* Failure recovery times of the control electronics should not exceed

maximum durations allowing effective action against actuator failures

producing sustained torques. (See Section 2.2.2).

32

o All systems should have provisions for overriding automatic functions
by ground command.

The above policies are intended to be general guidelines to system
design, but are not intended to be inviolate or inflexible. In implement-
ing fail-safe techniques in specific cases, competing factors -- such as
cost, practicality, weight, redesign or repackaging of existing equipment,

possible introduction of higher probability failures, increased risks of

operator errors, etc. - should be taken into account and may possibly

weigh heavier than the above listed criteria.

Functional redundancy and backup techniques should carry more in-

fluence in establishing the spacecraft design than numerical reliability

calculations, because the assumptions underlying numerical calculations -
exponential probability of failure - have questionable applicability to
this class of missions. (Also see Section 3.7)

2.2.4 Growth Potential

Growth potential is an essential feature in a multi-mission control

electronics concept since a successful approach is not usually the one
including every possible feature that may be needed in any of the future
missions ancicipated. Particularly when weight and power requirements are
major areas of concern, it is desirable to have a modular configuration

that provides a group of capabilities that is essential and common to most
of the missions and equipment complements considered and also allows adapta-
tion to the specific requirements of each application by addition of new
modules and components.

Flexibility can be enhanced by making maximum use of software tech-

niques for operational and housekeeping functions and by concentrating

mission dependent interfaces in individual units of modular design that
can be easily isolated from the rest of the system for development

purposes.

One of the processor architectures that is most adequate for multi-

purpose systems is the one where modularity is used to separate the
application-dependent and technology-sensitive elements (e.g.

memories, I/O units) from those which are needed in all cases (i.e: ACU)

or whose design is not affected by mission or equipment changes (e.g: RCU,
HCU).

33

A flexible memory organization is necessary because functional and

fault tolerance requirements not only affect memory size requirements, but

also may have a significant influence on operational characteristics (e.g:

error correction, duplex operation).

Critical functions of growth missions should not be considered among

the design criteria for a common baseline configuration but should be taken

into account in the definition of requirements for special purpose inter-

face units.

2.2.5 System Autonomy

Autonomy requirements are determined primarily by the ground super-

vision constraints imposed by the long round-trip communication times en-

countered in long-range planetary missions.

The reliability of an autonomous system depends not only on the avail-

ability of equipment to perform the required functions through the entire

mission life but also on the short-term operational stability and predict-

ability of the system. The more autonomous a system is made, the more

difficult it is to identify and evaluate its operation modes in cases of

failures or when subject to disturbances. Due to technical and economical

reasons, there are always limits to the amounts of testing and the effective-

ness of tests which prevent a complete identification and evaluation of all

the operation and failure modes that self-configuring system can have.

Consequently, there will always be some degree of uncertainty regarding the

ability of an autonomous system to perform its duties during critical phases

of a mission without any ground supervision. Deciding what is the degree

of independent decision making capability that a system should have is one

of the key tradeoffs required in the design of a fault-tolerant, autonomous

system. Intuitively, providing the minimum amount of intelligence that is

necessary to guarantee a reliable recovery from most foreseeable failures

and disturbances is a desirable approach, since this facilitates testing

by reducing the number of operation modes and, most importantly, the system

behavior would be more predictable.

Since not all missions, or mission phases, have the same autonomy and

recovery requirements, design flexibility is desirable for adjusting or

programming the system to provide the right amount of adaptivity for each

specific case.
34

In a given system with specified autonomous functions, the following

techniques can be effectively used to minimize operating mode uncertainties

and improve testing capabilities:

o Organize operations to be performed in a regular, predetermined

sequence. This eliminates priority conflicts, facilitates scheduling

of system resources (e.g., input/output devices), and minimizes fault

propagation.

o Minimize conditional interrupts. Whenever possible, critical functions

requiring high-speed decisions should be handled by special purpose

modes with fixed sequences of events. These modes should be accessi-

ble only when they are required.

o Reduce number of resident modes. The number of operating sequences

admissible should be reduced to a minimum. Reprogramming features

should provide the capability to change the modes resident in the

processor memory as required for each mission phase. The system

may have a large number of operating modes throughout the mission

but, at any given time, the number of modes available should be kept

to a minimum.

o Remove critical interfaces from the digital processor. Operations

requiring wide bandwidth, fail-safe provisions, or unique capabilities

(in terms of either operating risk or design requirements), should

be handled through interface elements designed specifically for each

application. These interface units not only provide compatibility

between the operating hardware and the digital processor but also

reduce the number of failure modes.

o Do not attempt to start the execution of a job unless the processor

is operating properly and the preceding task has been successfully

completed. The number of failure modes that may occur, and their

complexity, are direct functions of the amount of work that a machine

is allowed to perform without supervision. Failure propagation is

usually the cause of diagnostic/recovery confusions leading to perma-

nent system down conditions.

35

* Recovery approach. For simplicity and expediency, recovery should

be effected by switching redundant elements until a failed function

is restored. No detailed diagnostics should be made in line during

the recovery process since they are usually complex and time con-

suming. Whenever possible, peripherals should have provisions for

allowing the software to determine their operational status.

* Concentrate functions of similar natures in single units. Failure

modes and diagnosis and testing are simplified when only one unit is

required in operation for performing related kinds of tasks. For

instance, the ACU's should be self contained, not requiring the IOU's

in order to be able to perform arithmetic functions. Similar con-

siderations apply to recovery, input/output, and storage functions.

* Interleaved checkout capabilities. System and processor testing are

more realistic when checkout routines can be executed without modi-

fication of the normal sequence of operations for each mode.

* Mode control. Mode control must be safe and reliable. Accidental

mode transfers due to system or processor faults should be prevented.

Transfers should not be made unless originating causes are confirmed.

* Backup reconfiguration mode. A redundant and independent backup re-

configuration mode, implemented by hardware without interfaces with

the digital processor, is desirable to provide an alternate path for

initiating reconfiguration in the event that the normal channels

are disabled by multiple failures.

2.2.6 Physical

The physical constraints on system design are well known by every

design engineer. They are size and weight and power consumption (and

dissipation). Of these, weight and power consumption are most important

and are inter-related at the spacecraft level. That is, more weight can

be used to create more power, and lower power consumption requires a

smaller, lighter power system.

Not only are there maximum constraints (the spacecraft must fit in

its shroud and be less than a certain weight to lift off), but there are

tradeoffs within these constraints. As the supporting systems consume less

size, weight or power, more is available for the payloads.

36

It is always desirable, therefore, to minimize the physical charac-

teristics as much as possible, within the other constraints of technology

availability, schedule, and (particularly) cost.

It is not just the particular system set of physical parameters

that should be minimized, but those of the entire spacecraft. This de-

mands a degree of non-parochialness beyond that usually encountered in

human endeavors. For example, the weight of all the wiring connecting the

control system within itself and to other systems must be considered, and

circuitry may be required (or at least traded-off) to reduce this wiring.

The interfaces between all "boxes" are important to this trade.

It is also important to minimize the number of different power supply

voltages used and the degree of regulation necessary so as to reduce the

requirements on the power system and make its design better.

The method of electronics packaging chosen has a large influence on

size and weight (even with the same circuits). Obviously, this is greatly

influenced by environmental,EMI, schedule and cost considerations also.

Some continuing means should be provided to trade-off (and monitor)

the total weight and power to make sure that they are being minimized (and

controlled) within the other constraints.

Care must also be taken that one does not go too far in this area,

as that will increase the cost astronomically, may not help the reliability,

and will reduce the possibility of applying the designs to other programs.

It is good to design with a modularity to accept changes (program or

technological).

2.2.7 Technology

For the purposes of this report, the technology constraints are in

two phases:

o Parts, devices or circuits that are available now, that can be

bought in quantity, made under high-quality programs, and that

have been (or could be) qualified for spacecraft use. This includes

existing LSI.

37

* Parts or devices that could be made within a few months, using ex-

isting technology and processes. This includes LSI in new topological

configurations, but made with processes now in use.

The report will not concern itself with blue-sky or salesmen's-dream tech-

nology, as this cannot be confidently applied to near-term projects.

Note that control systems, programmable processors, fault tolerance,

or other subjects of this study are not technology limited. No new devices

or breakthroughs are needed. New devices can and will help, but what is

available today is sufficient to provide autonomous fault-tolerant pro-

grammable digital control systems.

2.2.8 Other

There are many other constraints besides those discussed in the pre-

ceding sections. Often they are more constraining than the operational,

physical, or technological ones. They can include cost (more about this

later) schedules, existing equipment availability, environmental considera-

tions, and political (organization-imposed) constraints.

Environmental considerations are usually no different for this type

of system than for any other in a spacecraft. One difference can be radia-

tion and the effect it may have on these essential functions. Another

could be arc discharges and the possibility of these creating transient

faults.

Often, to exercise either real or false economy, existing equipment

is utilized in new system designs. This is usually the sensors or actuators

in control systems. It will be shown later that little or no modifications

to this equipment is necessary for it to operate well in a fault tolerant

control system using a processor.

Cost is almost always the overriding constraint. Everything else is

equatable into cost. Usually the cost curves (for any feature or desire)

exhibit a certain increase in desirability(of whatever)proportional to cost

increase at a given slope, up to some point and then the slope changes with

decreasing improvement for ever more cost. It is important to stay below

the knee of this curve.

38

The economics of all design decisions made are very important. There

is always a tendency in the design of a system for that system to grow

(always in desirable features) up to (or beyond) the limits of cost, what-

ever those limits were. Each added feature or convenience is always de-

sirable (to a degree).

In the design of a fault tolerant processor this law must also be

observed. One can always continue to add features to speed up the opera-

tions, simplify the programming, shorten fault detection time, increase

the degree of fault detection, reduce the power or weight, etc.; but each

of these cost more money. Adding unnecessary features or characteristics

must be strongly guarded against.

In this report the aim is to critically examine the need for each

requirement. Also the penalty of each feature is given. The unique

tradeoffs may then be made as a part of optimizing the system design.

Note that there is no single optimum. The optimization is always

relative to the particular weighing of the occasion.

39

3.0 DESIGN CONSIDERATIONS AND TRADEOFFS

This section comprises the major portion of the report. It is concerned

with the various tradeoffs necessary to create a design for a fault-

tolerant, programmable digital control electronics system, which enables

the subsequent optimization of that design.

As noted earlier, the COPE processor is chosen as the baseline design,

with each tradeoff considered as a variation from COPE (where appropriate).

The subjects are closely interrelated and mutually dependent. For con-

venience in organization, the sections have been divided as follows:

* Redundancy Policy. How the system redundancy subdivision and

control is obtained. Redundancy management and cross-strapping

design are covered.

* System Design. The control system implementation, interfaces,

and criteria for functional redundancy, fail-safe design, and

power interruption, are developed.

* Hardware/Software Requirements. The requirements of Section 2

are developed into processor hardware and software needs.

* Processor Design. Design tradeoffs in processor hardware

design are explored.

* Software Design. The software design organization tradeoffs

are presented.

* Hardware Fault Detection. This covers processor and peripheral

fault detection techniques.

* Reconfiguration. This section covers the complex subject of

reconfiguration criteria and techniques.

* LSI Applications. The effect of further LSI usage is discussed.

40

3.1 Redundancy Policy

The purpose of redundancy is to achieve the specified reliability for the
system. Reliability is a mathematical measure of proper system perfor-
mance. Reliability is the probability of successful system operation for
a given time period. The reliability of the system is made up of (the
product of) the reliabilities of the individual portions of the system.
In a non-redundant system, the reliability is a measure of the individual
failure rates of those portions, down to the part level. Any part fail-
ure results in a system failure.

"Redundancy" is something added, which is not needed except to satisfy
some contingency. If no faults or failures occur, the redundancy is/was
parasitic and uneconomical. A classification of redundancy types is
shown in Figure 3-1.

Redundancy

Spatial Temporal

Determini tic Logic Random Logic

Active Passive

Standby Continuous Majority Logic Coding Self-
Combihational

Figure 3-1

Redundancy Type Classification

41

Some definitions for these redundancy types.are:

* Spatial Redundancy - Use of physically distinct multiple channels

for information transmission or processing. Works for trans-

ient or permanent faults.

* Temporal Redundancy - Repetition of the same information over the

same channel at different times. Can only be used for trans-

ient faults.

* Deterministic Logic - Use of devices whose behavior is pre-deter-

mined and non time-variant.

* Random Logic - Use of devices whose behavior (or routing) is not

deterministic.

* Active Redundancy - Use of some means of detection of faulty de-

vices and subsequent rerouting of information. Also called

dynamic or Block redundancy.

* Fault - A malfunction which in a non-redundant system would cause

system failure.

* Failure - The unacceptable system performance caused by one or

more uncorrected faults.

* Error - The difference between the actual and the correct output.

*e Self-Combinational - An arrangement of devices which permits the

logical output to be correct in spite of faults. (Series,

shunt, quad, etc. arrangments)

* Majority Logic - Uses three or more channels with logic which de-

livers the majority output for a minority of channel faults.

(Voting)

e Coding - The message includes a code which enables fault (error)

detection and correction.

42

o Standby - Unused elements are unpowered.

o Continuous- Unused elements are powered.

Temporal redundancy implies the repetition of a part of the program to

detect or correct or mask transient faults. Its primary use is communi-

cations systems where noise is a major problem. It will not help with

permanent faults. Random logic is being developed, but is not yet

applicable. It includes artificial neural networks and similar approaches.

In active redundancy, two or more functionally equivalent blocks are

used, any of which may perform the intended function. These blocks may

be switched into use by switching the signals in/out and/or power to the

blocks. If a fault occurs (how this is detected is a separate subject),

the faulty block is not used and a non-faulty block replaces it.

Passive approaches include use of majority logic, coding, or self-

combinational logic.. Majority logic uses an odd number of channels to

process information. The outputs of all channels are compared and the

resulting output is voted upon; that is, the output is determined by the

majority result. (This is sometimes referred to as "modular" redundancy.)

Coding involves a message structure containing coded information allowing

a correction of a small number of message faults. In one form, it be-

comes a type of temporal redundancy. In another, it can become a type of

majority logic.

Self-combinational logic includes a passive arrangement of components

which permit them, through series, parallel or quad configurations, to

"cover" for faults in each other. The circuit or device is designed

for a large tolerance of component characteristics, so large that compon-

ent faults can be masked by the series or parallel component.

Note that passive redundancy approaches do not require a fault detection

device (fault detector). Therein lies one of the principal advantages

for this approach.

43

Redundancy always involves the addition of something, time or hardware.

Only the redundancy necessary should be provided.

Standby redundancy is the most efficient redundancy in terms of power

consumption since only the minimum equipment is on at any one time. It

is also very efficient in terms of reliability obtained, particularly if

the off failure rates are much less than the on failure rates.

An element is defined as a block on a reliability block diagram. There

may be many different blocks, some identical and some different, in a

system. Blocks that perform an identical function, in substitute for

each other, in standby redundancy; are considered to be the same element.

Single standby redundancy involves one block in standby to another, which

is in use. Dual standby redundancy involves two blocks in standby, etc.

Sometimes these are referred to as 1 of 2 or 1/2, or 1 of 3 (1/3), etc.

redundancy. We may also have cases of 2 of 6 (2 needed of 6 total), etc.

In any case, the total array of blocks in standby to each other is one

element.

A system may have different elements possessing different types of re-

dundancy. The element need not bear any direct relationship to boards,

assemblies or other physical packaging subdivisions. It usually bears

some direct relationship to function, but a single function need not be

a single element or vice versa.

The standby block of a redundant element is assumed to have a failure

rate equal to or lower than the block in use. The ratio of these failure

rates is given by an r factor (0 < r < 1).

The blocks of the elements must be designed so that any failures within

the block are isolated to that block and do not propagate (fault in-

dependence). Each block is interconnected to other blocks of the same

element and other blocks of other elements. These inputs and outputs

must be protected by cross-strapping or switching to prevent failure

propagation. How this can be done is discussed in Section 3.1.3.

44

A control switch of some type must be used to turn the on-block off and
the off-block on to control the element. This is usually done by con-
trolling the power to each block. The switch is characterized by a fail-
ure rate, Xs. The control switch designs are discussed in Section 3.1.2

Methods must be included for fault detection. This detection may include
some degree of fault diagnosis to isolate the fault to a block, circuit,
or part. Fault detection is discussed in Sections 3.5.5 and 3,6'.

If the fault is detected and diagnosed to a redundant element or block,
then that block may be replaced by a standby block. This is termed re-
configuration. If such reconfiguration is controlled from overt action
on the ground, it is manual. If it is controlled by the system itself,
then it is called automatic or autonomous. The latter is a necessity
for fault-tolerant systems. The details of reconfiguration are covered
in Section 3.7.

Where fault-detection is difficult, or where the system "down'time"
associated with fault detection and switching is excessive (or required
to be zero), or where there is no more ultimate decision making capa-
bility available, then majority passive redundancy may be needed.

Majority (voting) approaches have the inherent disadvantage of high
power consumption since (as a minimum) three of each element (plus the
voter circuit) must be on (compared to one element plus switch for the
standby redundancy). Also no advantage can be gained by having a lower
failure rate for the "off" elements.

For elements of the same size (and ignoring the switch or voting circuits),
the standby redundancy will always give better reliability and lower
power. Since the voter can be made very slmple, however, the element
size is made small and the switch and voter are included in the calcula-
tions, then the majority voter approach can give greater reliability.

The voting must occur between each set of identical elements. The outputs
of all preceding elements must enter the voter for each succeeding element
These intermediate voters then become effectively a part of the elements
and only the final voter has an appreciable effect on the reliability.

45

If this is not done, then all intermediate voters are effectively in

series, reducing the reliability considerably. The final voter should

be made redundant using some self-combinational approach.

It is apparent that a majority approach would provide problems of

modularity also. It would be difficult to organize a processor for modu-

larity in.terms of reliability, memory size, etc. without an excessive

wiring and connector bulk.

Majority approaches are not efficient of power, requiring three to four

times the power of standby approaches. Their use should be minimized to

the most "hard core" portion of the system. This hard core portion

should also be minimized in extent as much as possible.

3.1.1 Element Size Determination

To divide up the system into redundancy elements to achieve a particular
reliability requirement is the problem. To do this, some use of prob-
ability mathematics will be necessary. First, consider the case for one
element made up of two identical blocks (single standby redundant).
(See Figure 3-2).

Each block of the element has an on failure rate, X. The r factor and
Xs have been previously defined. The probability of success, P, for the
time, t, is:

P et + A - s + (1)
Ss + r e

this equation is made up of terms reflecting the following:

* At any given time, both blocks may have had no failure (success),
either block may have failed (success), or both blocks may have
failed (failure).

46

o Failures may occur with equal probability at any time as determ-

ined by the failure rates X, rX and x s

o Ordinarily, block-i is used until (and if) it fails. In the mean-

time block-2 is off at a failure rate rx. If block-I fails, there

is some probability that block-2 will have already failed. The

equation accounts for this joint failure probability.

In use

Block - 1

As

Control Block - 2
Switchr

Standby

Figure 3-2

Single Standby Redundant Element

o The switch may fail in either of two ways or it may not fail. The

ways are:

- The switch fails so that only block-I can be used.

- The switch fails so that only block-2 can be used.

o The switch failure possibilities are treated as equally likely.

The equation accounts for the contribution of the switch failure

rate to the failure rates of the blocks.

o The equation accounts for the integration of all possibilities

up to the time, t.

Similar equations have been developed for other types of redundancy.

Later, a general equation will be shown.

47

The cross-strapping circuitry can be shown to increase the value of the

x of the element (and not the switch) if the cross-strapping truly

isolates failures and does not contribute single-point failures of its

own.

We shall next examine the effect of the variables on the system reliability.

The reliability P of a system of N identical elements in single-standby

redundancy, for the time t, is given by

X t AT t + rX N
NX e N s N

P e e + T I - e (2)
Nx s+ rX-

where AT = the total failure rate of the system

As = the "switch" failure rate (each switch)

r = standby-failure ratio

The units for xT and As are failures /109 hours. The units for t are

hours. P, N and r are dimensionless.

The failure rate for each element is A = AT/N. A redundancy efficiency

n can be defined as

= A x 100% (3)

Equation (2) was programmed for Tymeshare and run for over 14,000 com-

binations of variables. These runs exist in the form of tables at TRW.

The program (REX) is given in Basic form in Table 3-1.

The tables allow a quick determination of N for a given P and the other

parameters. The program can also be used directly, modifying the

appropriate statements to limit the values of T, As and r used. Since

equation (2) is not easily solved for N, it is best to treat N as a

variable, solving the equation for P for a variety of values of N.

48

Table 3-1

REX PROGRAM

10 2 RELIABILITY EXAMPLE (REX) PROGRAM
20 X = 9
30 Y = 5
40 Z = 3
50 DIM L(X)p R(Y)p T(Z) G(X)p P(X)

100 FOR U = I TO 9
110 READ L(U)
120 DATA 2p 5p 7 10 20p 30, 40, 50, 70

130 NEXT U
200 FOR V = 1 TO 5
210 READ R(V)
220 DATA 0. Oolo 0o2D 005. 1
230 NEXT V
250 FOR W = I TO 3
260 READ T(W)
270 DATA 5p 7p 10
2b0 NEXT W
290 PRINT
291 PRINT
292 PRINT "SUCCESS PROBABILITY FOR A SYSTEM WITH A TOTAL"
293 PRINT "FAILURE RATE LAMBDAD DIVIDED INTO N EQUAL ELEMENTS"

294 PRINT
300 FOt H = 1 TO 3 1 START H LOOP CT VARIATION)
310 FOR L$ = 001 TO 1 BY Oo1 2 START LS LOOP (.LAMBDA-S VARIATION)

320 FOR K = I TO 5 1 START K LOOP (R VARIATION)
360 Z$ = "%%o% '-YEARSo LAMBDA-S = o%% KBIT. = oo %° LAMBDA (KBIT)
+ =a//

370 PRINT IN FORM Z$s T(H) L$ R(K)
380 PRINT IN FORM 03B"N"9(5B ZZ)//°o L(1), L(2)o L(3)o L(4) L(5) L(6).

+ L(7)D L(b8) L(9) 2 COLUMN HEADINGS
400 FOR N = 1 TO 31 BY 2 ! START N LOOP (BLOCK)

410 FOR I = I TO 9 2 START I LOOP (CALCULATEONE LINE)

420 T$ = T(H)*~o76E-3
430 G(I) = L$ + R(K)*L()/N
440 P(I) = EXP(-L(I)*T$)*(1 + L(I)C*(- EXP(-G(I)T$))/(NeG(I)))BN
450 NEXT I ! END I LOOP
460 F$ = "2B ZZ 38"
470 PRINT IN FORM F$s N
500 FOR J = 1 TO 9 2 START J LOOP (PRINT OUT ONE LINE)
510 F = "Z o ZZZ 2B"
520 PRINT IN FORM Fo P(J)
530 NEXT J ! END J LOOP (LINE)
535 PRINT
540 NEXT N 2 END N LOOP (BLOCK)
550 PRINT
560 PRINT
570 PRINT
580 NEXT K 2 END K LOOP
590 NEXT L$ i END L$ LOOP
595 NEXT H . END H LOOP
600 PRINT
610 PRINT
620 PRINT "Ao Ao SORENSEN O"sDATE0 TIME

630 PRINT
640 PRINT
900 END 49

In the real world, the lambda of all elements 'n the system can not be

the same. Because of that, the practical use of Equation (2) is limited.

It is useful, however to generally determine the number of elements needed,

their size (lambda), and the influence of changes in As and r.

It is also possible to apply more sophisticated redundancy (such as dual-

standby redundancy, 2 of 4 etc.) to achieve better reliability for smaller

values of (and possibly greater "efficiency"). This should probably

not be done in general throughout the system for all elements, however.

More will be said about this later.

Also to be noted at this time is the fact that the overall reliability is

most efficiently achieved if all elements have approximately the same

reliability. "Strong" links (higher than average element reliability)

are of not nearly so much help as "weak" links (lower than average

element reliability) are of harm. This is a sort of "chain is no stronger

than ..." theory.

Figures 3-3 and 3-4 were plotted from data generated by equation (2).

These figures show P vs. N for values of xT of 5, 10, 20 and 30 thousand

bits (failures /109 hours). Both figures are for 5 years and with r

varied over its full range. Figure 3-3 is for xs = 100 bits and

Figure 3-4 for As = 500 bits.

,lote that, as expected, increases in r or Xs reduce the reliability and

result in a larger value of N for a given P(or smaller value of P for a

given N).

Some examples, taken from these figures, are of interest.to show the

effects of r and Xs on the redundancy efficiency, n.

50

- -- Figure 3-3 . P -s.o. b f. fo --- d - - ..

;,Xi- ./ . . ,- -..

P ?p\. - ~oo +~

-B--

/'- / - - -.- -, K

_ / / /-/ -- . - .-

-- ;/ ,- / / / ... -

./ I .

1'*/ .• p.-

I , // / , . -- .--. : - • . -

V:? -p

/ I p :

/!I . i- i: . . - :
.S ! // /, / " "p. " " ' "- , "" ".- "

, I 1 . - / r . - -... "-
_ I I/ :> L-" - " J -

/ I/ / .- .

.,r. . /.

'p.., III ,/ .-- " . - 7 ' ' -- " - "
- , / / /'/ ,I .--. 7_ -

i/i ' / - .

- I / /

_~; i /I ,/ ,

ii/

~97 , / / /I ... p.-

•/ . . ./ ,-' - ,

np.-

O - / ., I - -pPge 1-

.;. / .,

., I IO 20

', / //- .

, %I / ' 7 p.' -

j 7 / / .

I ,' ,y - - -

I / / p. ./p.

.3 jI ~ -/ / -p.p.- - - - -p Page 51

- II / I ,/ -, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-1-
01 0 N 2 3

Figure 3-4 P vs. N for xT and r

1O PAGE IS
QUALI

.9- - -

,99 7

.9.

.9 4 -T -

,992 -

,99)

.94

I i' i. . ' '1

//

, -." 51

, /i / / __ ._i___ __ _ gi __"

91 I ,.1 J u " -

- --- ~~ N ' -N

Example -1: t = 5 years

As = 100 bits

AT = 10 K bits

P > 0.994

For r = 0.1, N = 21 , X = 476 bits, x st= 2100, n = 83%

.r = 0.5, N = 29 , X = 345 bits, st= 2900, n = 78%

Example -2: t = 5 years

As = 100 bits

XT = 30 K bits

P > 0.95

For r = 0.1, N = 17 , x = 1765 bits, AsT 1700, n = 95%

r = 0.5, N = 26 , X - 1154 bits, AsT = 2600, n = 92%

Example - 3: t = 5 years

As = 500 bits

XT = 10 K bits

P > 0.99

For r = 0.1, N = 20 , A =500 bits , AsT = 10,000, n = 50%

r = 0.5, N = 27 , A= 370 bits , AsT = 13,350, n = 43%

Example -4: t = 5 years

Xs = 500 bits

AT = 30 K bits

P - 0.95

For r = 0.1 , N = 25 , A = 1200 bits, AsT = 12500 nr = 71%

r = 0.5 , N = 33 , > = 909 bits, AsT = 16500 n = 65%

See from these examples how the increase in r or As drastically increases N

(and reduces x and n)

The redundancy efficiency was defined as the ratio of the system A di-

vided by the system As (X100) in %.

This is the same as the element A divided by the element As'

i.e. = T x lO0 = x 100 (4)
AsT s

It is a measure of the penalty for making the system redundant, over and

above the doubling of circuitry. n should be 80% or higher.

n is a function of As and r; as well as AT and P & t. It is a very

strong function of As because as Xs increases, not only does the de-

nominator of the function increase, but the numerator decreases. [As

As increases the curves of P vs N for constant r and AT flatten, re-

quiring a larger N for a given P. Since A = AT/N; this reduces X .]

As r increases, the general shape of the curves stays the same, but P

decreases (for all other variables constant). If P is to remain con-

stant, N increases, reducing x and n.

n is a measure of the part count increase, weight increase, power

increase, and cost increase in the system due to the redundancy cross-

strapping and switching.

Another example can illustrate some limits on the value of As.

Example 5 T = 5 years

P > 0.95

AT = 30 K bit

A = 100 bit , r = 0.1 , N = 19 , X 1579 , n = 94.0%

r = 0.5 , N = 26 , A = 1154 , n = 92.0%

r = 1.0 , N = 35 , A = 857 , n = 89.6%

54

S= 300 bit , r = 0.1, N = 21 , x = 1429 , n = 82:6%

r = 0.5 N N = 29 , x = 1034 , n = 77.5%

r = 1.0 , N = 40 , X = 750 , n = 71.4%

= 500 bit , r = 0.1 N = 25 , = 1200 , n = 70.6%

r = 0.5 N 33 , A = 909 , n = 64.5%

r = 1.0 N = 44 , = 682 , n = 57.7%

S = 700 bit , r = 01 29, = 1034 , n = 59.6%

r = 0.5 N = 39 , X = 769 , n = 52.3%

r = 1.0 N= 51 , X = 588 , n = 45.7%

Here, the variation in r gives a 4.4 to 13.9% variation in n. The

variation in xs (for r = 1.0) gives a 43.9% variation in n. The

systems with As > 300 bits are not sufficiently efficient. If the

desired P were higher (or xT higher), then the equivalent point would

occur for even lower xs.

All of this ignores the fact that xs may not be a constant, but is a

function of the elements to be cross-strapped. Sometimes Xs decreases

somewhat with element size (x), but it has an irreducible minimum of

the switch lambda. Sometimes Xs can increase, as x decreases because

more interfaces must be cross-strapped as the subdivision of "blocks"

between elements occur.

For a given T, xT' Xs, and r; a specified P may not be obtainable for a

limiting minimum of n. In fact, it may not be obtainable for any n.

(i.e. N + m),

The effect of time on P vs N is shown in Figure 3-5. Here, a XT of

10 K bit and r = 0.5 was used. Curves are plotted for xs= 300 and

500 bit and t = 5, 7 and 10 years. An example is taken from this figure:

55

Figure 3-5 P vs N for x and t.

- o 56- C-

r- - . 5

,917

,9%4 j

on-

4 3

,97 -. o10
/50

,M -3 *RIGIN PGEIS

Pace 56

\/ /..~j

Example 6 XT =.' 0 k bit

r = 0.5

P > 0.97

As the time increases, note how N must increase: (For Xs = 300)

T = 5 years N = 5

T = 7 years N = 11
T = 10 years N = 29

Again, note the influence of As. For s = 500:

T = 5 years N = 6

T = 7 years N = 13

T = 10 years N = 42

The influence of the change in Xs is much greater for the longer time.
The same principle can also be seen to apply on the effect of the r
factor.

An important question is the proper value for r, the standby failure
factor. Cases can be made for values of r over its full possible range
(0 to 1). At the one extreme, it can be surmised that of course the
failure rate is lower when the equipment is not in use. At the other
extreme, it can be explained that the derating is so extreme (the com-
ponents are operating at very low stress factors) that the on and off
failure rates should be identical.

Experimental data can be found to support the full range of r factors.
It is probable that, for mechanical devices or electronic components
operating at 50% or greater stress that low values (r!0.1) are justified.
For semi-conductor devices (non-power handling) such as digital integrated
circuits, if they are properly designed and applied, then the standby
failure rate should be essentially the same as the "on" failure rate
(r=l).

57

Use of a constant r factor for all components in circuit, element or sub-

system is incorrect, but must be done to simplify the reliability cal-

culations. Because of this, an average r factor must be postulated for

each element, taking into account the devices contained therein.

We have seen that the r factor has a fairly major effect on the system

reliability or the system complexity to achieve the required reliability.

Certainly more research and collection of data is necessary to establish

the proper choice of r factors.

The use of constant failure rates in terms of numbers of failures per

unit time is a convenient fiction of reliability work. This assumes a

so-called "bathtub-shaped" reliability curve. That is, that the device

will exhibit a high failure rate initially (infant mortality) and a high

failure rate after a long time (wearout), with a lower failure rate in

between over the majority of the life. This lower failure rate is assumed

constant and is the familiar X used in the reliability calculations.

The statistics are also a convenience to permit a mathematical treatment

of reliability. Any one part does not have a constant failure rate - it

can only fail once. Only when there is a large number of the same part,

at the same stresses, applied in the same way, can one hypothesize a fail-

ure rate for that type of part. For any other type of part, or different

stress or application, that failure rate is different.

It is further assumed that failures are random. That is, they can not be

predicted in any way other than on the average. The constant failure rate

implies that there will be an equal chance of failure in any equal in-

crements in time, anywhere in the eon.

Now none of the preceding is probably true. Failures are probably all

determanistic, at least in the solid-state electronics that we now have.

There are no known deterioration or wear-out mechanisms. There is no

aging and if the parts are properly designed and built, operated at low

enough stresses and not abused, then they should last forever (i.e.,x=O).

58

That we do get failures is a result of the imperfection of the design,

fabrication or application. The inability to predict exactly where these

failures will occur results in the need for a statistical approach to

failure prediction.

What has been done is to assemble large numbers of the same part, manu-

factured in the same way at about the same time. The same stresses are

applied and the parts are put on life tests, with all failures and char-

acteristic degradations recorded. After a long time (a year or more)

some statistical determination of failure rate can be established, with

the confidence factor increasing as the number of part-years is increased.

A similar process can be used to gather data from devices in actual use.

Such data has been gathered from spacecraft flights. It is more question-

able, however, since the conditions are less controlled and since it is

often difficult (or impossible) to isolate failures to a specific part.

Even with these limitations, orbital failure rates have been "measured"

for many parts, generally supporting the rates established in life tests.

The failure rates used have been gradually getting smaller over the years.

This is probably due to equal measures of more testing, better parts,

improved processes, etc. This trend is expected to continue.

We must recognize what a failure rate of one failure per 109 hours im-

plies (such as for a resistor). This says that if I have 105 such parts,

only one (on the average) part can be expected to fail in 10,000 hours

(over a year). This is truly remarkable.

For some complex devices, such as gyros, reaction wheels, etc. the estab-

lishment of a reliability figure is difficult. Due to economic limitations,

not enough of the devices can be built and tested to establish a reasonable

failure rate with any confidence level much above zero. Usually such de-

vices are analyzed as being made up of their lower level parts (motors,

bearings, etc.), where tests (or guesses) have indicated some appropriate

failure rates. Here the statistics are even more suspect and wearout

effects can probably not be ignored.

59

We saw earlier what a large effect the xs has on the reliability effi-

ciency. It is very important to keep Xs low. Assuming the use of stand-

by redundancy, As is made up of the failure rate of the element control

switch and the cross-strapping circuitry (if active).

The control switch turns the power to the element on or off depending on

the signal(s) on control line(s). The cross-strapping may be passive or

active, depending on the type of signals or power to be cross-strapped.

Since the failure rate of the cross-strapping is proportional to the num-

ber of signals cross-strapped, careful attention must be given to reduc-

ing the number of these signals when dividing the system into redundant

The design of the control switch and cross strap circuits is discussed

in Sections 3,1.2 and 3.1.3. These designs have as their goal a minimiza-
tion of failure rate, within the constraints of failure isolation, minimi-

zation of signal degradation, etc. If this is done, and if the elements

are divided for minimum interface, then the As will be minimized also.

While the r factor and Xs are very important to the system reliability,
the major influence is still the total failure rate of the non-redundant
system, AT. This is made up of the addition of the failure rates of all
of the system components.

We have seen that there are limitations to the system reliability that
can be obtained with fixed values of AT t, s and r. However, as AT
decreases, these limitations rapidly move out and the reliability
efficiency (n) quickly improves.

It seems almost too obvious to state that the most reliable system is the
most simple one (all other things being constant), but it is true. Any
function omitted can not fail. The system designers must be made aware of
this so that the need for all the niceties and conveniences can be proper-
ly assessed. (Compare the reliability of a Pinto and a Continental, for
example.)

60

Automatic features should be discouraged unless really necessary.

Capabilities embodied into the ground station instead of into the space-

craft will be more reliable due to their ability to be repaired.

A second way to reduce the AT is to design the circuits required so that

they require a minimum of parts, each of which is chosen for minimum A.

Such cleverness of design is herein assumed. Generally this implies a

high degree of integration (more use of integrated circuits). It has

been established that a small-scale integrated circuit (SSI) (such as

flip-flop) has a lower total A than the equivalent circuit designed

with discrete components. Similarly a medium-scale integrated circuit

(MS) (such as a shift register)has a lower total than the SSI-circuit

equivalent. The same is true of LSI (large-scale integrated circuits)

relative to MSI.

It can be seen then that LSI should receive priority over MSI, over SSI,

over discretes; etc., for purposes of reliability. That similar advan-

tages accrue to volumn and power (and often even cost) explains the in-

creasing use of higher-scale integration.

The failure rate of an IC seems to be made up of a constant portion (for

the package), a portion proportional to the number of leads (the lead

attachment probably being the least reliable feature), and a small portion

proportional to the complexity (number of equivalent gates) of the device.

Current lambdas for integrated circuits are in the range of:

SSI 10-20 bits (failures/l0 9 hours)

MSI 15-50

LSI 30-300

A general equation has been developed at TRW for the calculation of the

reliability of standby redundancy arrangements of any complexity.

61

The equation is:

y-x+1 y-x+1-j j+q-2

p =e - x t C (-1)j- e-R(j-l)xt E 1 x

j=1 (j-1) I q q

if j + q = 1, this term = 1

where: p = the overall reliability

x = the number of elements active and required

y = the total number of elements (to start)

x = the "on" failure rate of an element (bits)

t = time in hours

j,q, m = operators

R - + r

As = the failure rate of each switch used to switch between

on and off elements (bits)

r = the ratio of "off" failure rate to "on" failure rate

(r < 1).

This equation calculates the reliability of x(needed) of y(available)

elements, with the standby elements (y + x) having a failure rate lower

than the active elements (as determined by r). x and y can be any numbers,

but x < y.

62

Equation (5) has been programmed in Basic language for Tymeshare. The

program (URP2) given in Table 3-2 , provides for the simultaneous
computation and printout for an entire system, having elements of differ-

ent names, times, x, As and r. A sample input of data and the resulting
output is shown in Table3-3 . Note that both the individual reliability

and the cumulative reliability are printed.

This program has been the most useful tool for reliability calculations

and system design used.

A systematic procedure for determining the number of elements needed, and

their size, is given below:

o Determine (or estimate) the total, non-redundant, system lambda

o Estimate the probable average value for AS. This is best done from

previous experience, but the value should be from 100 to 300 (fail-

ures/l0 9 hours). (See Section 3.1.2).

o Decide on the r factor.

o Presumably, the value of t is given and a desired value of P is
known.

o Use equation (1) iteratively to find the value of N which gives a
P just larger than required.

o The average element lambda is x = xT/N

0 Determine the efficiency n = 100

o If N is too large, X too small, or n too small; the requirements

may be too severe for the contemplated system lambda. If possible,

reexamine the requirements, the system design, and the estimates

for XT xs and the r factor selected. If the numbers are reason-

able ,proceed.

63

Table 3-2
URP2 Universal Reliability Program -2

10 ! UNIVERSAL kiELIABILITY POGKAM - TWO (URP2)

20 iEAD Ms L ! NO. OF ELEMENTS, INITIAL RELIABILITY

30 nxEAD 0, V ! PkINT HEADING, NO. OF CODE SETS

40 ! IF PRINT HEADING = 0, THEN IT IS NOT PRINTED

45 ! V = NO. OF SETS OF T, S,

50 PRINT
60 - INI
70 IF 0 = 0 THEN 180

80 PRINT TAB (26): "XYZ SPACECRAFT ACS" ! lb SPACES

90 ! TAB NO. = 35 - (TITLE LENGTH)/2

1UO PHINT TAB (23): "RELIABILITY CALCULATIONS" ! 24 SPACES

110 PRINT
120 ZS = "B 0%%.%% '-YEARS, LAMBDA-S 'ZIZZ' BIT i = '% %%'

+ /"
122 DIM T(V), S(V), SS(V), R(V)

125 Fuo G = 1 TO V ! START G LOOP
127 MEAD T(G), S(G), X(G) ! YEAKS, LAMBDA-S (KBIT), K FACTON

130 SS(G) = S(G)*1000
140 PKINT IN FORM Z$: T(G)G)) S$(G) (G), G

145 NEXT G ! END G LOOP
150 PRINT
160 RhINT "ELEMENT-NAME":TAB(15):"LAMBDA (BITS)":TAB(30):"RED.TYPE":TAB(

+ 43):" -EL.":TAB(51):"CUM. EL.":TAB(63):"SET NO."

170 PRINT
180 IF L = 1 THEN 220
190 PRINT "INITIAL RELIABILITY"
200 LS = "40B %-5% 38 %*5% /"
210 PRIINT IN FORM L$: L, L

220 DIM A(M), X(M), Y(M), P(M), B(M), A$(M)' U(M)

240 STRING H(M)
250 FOR I = 1 TO M ! START I LOOP
260 KEAD H(I), A(I), X(I), Y(1), U(I)

270 ! ELEMENT NAME, LAMBDA (KBIT), ELEMENTS NEEDED, STARTING ELEMENTS, U

+ SE SET NO.

273 G = U(1)

276 1 = T(G)*b760
280 RS = S(G)/A(1) + k(G)
290 A(1) = A(I)*1E-6
300 N = Y(1) - X(1) + 1

310 Fs = 0

320 FOR J = 1 TO N ! START J LOOP
330 E = 0

340 FO j = 0 TO (N - J) ! START U LOOP

350 D = 1
360 IF J + U = 1 THEN 400
370 KGCOR K = 0 TO (J + 0 - 2) ! START K LOOP

380 D = D*(X(I)/RS + K)

390 NEXT K ! END K LOOP
400 us = 1

64

URP2 (continued)

410 IF u = 0 THEN 460
420 W = 0
430 U$ = $*W
440 W = W - 1

450 IF W > 1 THEN 430
460 E = E + D/Q$
470 NEXT I! END 0 LOOP

460 G$ = 1
490 IF J = 1 THEN 540
500 W = J - 1

510 G$ = G$*W

520 W = W - I
530 IF W > 1 THEN 510

540 F = (-1)?(J-1)*EXP(-R$*(J-1)*A(I)*T)*E/G$
550 F$ = F$ + F

560 NEXT J . END J LOOP
570 P(I) = F$*EXP(-X(I)*A(I)*T)
580 IF I > I THEN 610

b90 B(I) = L*P(I)

600 IF I = I THEN 630
610 I$ = 1 - 1

620 B(1) = B(Is)*P(1)
630 NEXT I . END I LOOP

640 FOR C = 1 TO M ! START C LOOP (PRINT OUT)

650 PRINT H(C)

660 Z = 1"178 ZZDZZZ 78 %%/V1%% 58 %o5% 3B %.5% 78 Z /"

670 AS(C) = A(C)*1E+9
6b0 PRINT IN FORM Z8. A$(C), A(C), Y(C)o P(C)o B(C)P U(C)

690 NEXT C ! END C LOOP
700 P INT

710 PRINT
720 PRINT "Ao Ao SOKENSEN ":DATEs TIME

730 fRINT
740 PRIN'I
750 DATA 2. 1
751 ! NOo OF ELEMENTSo INITIAL RELIABILITY
760 DATA 19 1
761 ! PRINT HEADING IF NOT O0 NOo OF CODE SETS

770 DATA 5S 005D 0ol

771 ! YEARSD LAMbDA-S (KBIT)p R FACTOR (FOR SET 1)

772 2 SET 2D ETCo- FOLLOW IN 771 TO 779

780 DATA ELEMENT-Ap 5D 1n 2p no ELEMENT-B 10 2p 4D 1

781 ! ELEMENT NAMED LAMBDA (KBIT)D ELEMENTS NEEDEDD STARTING ELEMENTbD S

+ ET No FOLLOW IN 780-899

785 DATA CHANNEL o0317D 1 2

900 END

65

Table 3-3 URP2 Sample Run

1 760 ui5N 1LET~ ;~ '2

72 DAT ELENT-C! 5 aiF293
S 7 1 TT ELEr1ENTDr As~ E- 4, -3

FELIFz-:LIT*-,' C$nLI:u-LFTIr-N4 :7

.01-YEAF::q LAMP-2: - 5GCj IIT P = S ETI

.50YERS LPt!ETA-: = 1rQ *c'S;_IT9 P = .5,:ET 2
5.0-ERP:., LAB S= 500C BTF F -. 20!C' SET :3

ELEMErNT -AE LFAhEtA ':P:T:) PEDA.TPE FEL. CUrl .EL. SE~T Ml

ELEtVrNT-P

ELEME[.T-:
2000 C'- 1. .9944S 975

ELEMENT-':
599 2 973539 .49

ELErMErT-D
1.:' 0 2z:l:c& 4 .9a:3a2 .8742.4

ORipGINAL PAGE IS
2 OR QUAIXImry

66

o Divide up the system into approximately N elements, attempting to
keep them all near to the size X. Work this out in detail, calcu-
lating the actual x for each element. Make the divisions to try to
fit the following criteria:

- Minimize interface lines
- If possible, make interfaces digital rather than analog
- Divide along functional lines
- Redesign circuits or blocks, if necessary
- Reduce the number of different elements each element inter-

faces with

- Use serial (instead of parallel) data interfaces
- Maximum use of simplest cross-strapping

o Design the control switch and cross-strapping for each element.
Preferably, these were previously designed and used, but some new
designs might be required to suit circumstances.)

o Calculate the actual Xs for each element. Pay particular care to
associating the cross-strapping to the proper element. (This is
not as easy as it would seem).

o Decide on the r factor for each type of element.

o Take into account the different duty factor of each element. Some
elements may be in use for only a short time in the mission. The
time, T, for each element can be adjusted to account for this. The
environmental stress factor can also be accounted for here too.

o It may be that single-standby redundancy will not be adequate for
some elements to get their reliability to the norm. That is, for
best design or a variety of other reasons, the lambda may be
higher than the desired average determined earlier. If so, then
dual-standby or other forms of redundancy may be applied.

o The reliability program (see Equation (5)) should be used to calcu-
late the individual reliabilities and the system reliability.

67

e The individual reliabilities should be examined for a general

equality. If the numbers are too high, perhaps elements could be

combined. More normally, there will be some weak links and the

overall reliability won't quite be achieved.

* Redesign or apply higher levels of redundancy to the weak links,

starting with the weakest links that can be strengthened with the

least penalty.

* Continue to optimize, trying to achieve the reliability goal for the

most efficient system. Use of the reliability program should be

modified in the data statements as the design iterates, so that it

always reflects the most real and latest configuration.

68

3.1.2 Element Control Approach

In standby redundancy the control of which blocks are in use and which

are in standby is accomplished by turning the power on or off to the

blocks. Usually the blocks are passively cross-strapped so that their

selection is by such power control. Sometimes (for high power interfaces)

the outputs/inputs must also be switched for the control. This might be

due to difficulty of passive cross-strapping at such an interface.

In the previous section we saw that as the element size decreases the

failure rate of the control switch becomes more important. Switch failure

rate reduction can be achieved by:

o Reducing the number of voltages needed in the block.

o Simplification (or higher degree of integration) of the switch.

o Incorporation of a degree of passive redundancy in the switch.

o Proper interfacing of the switch with the controlling source.

Other important control switch design criteria are:

o Need for independent and mutually exclusive switching of power

to each block.

o Low internal voltage drop and power loss. Low standby (non-

switching) power consumption. (The switch power consumption

can become a large part of the system power consumption.)

o No single point failures.

The filtering requirements of the power (for EMI) may also be involved

in the control switch design. The distribution of the power to the

blocks may also be influenced.

Classically, two somewhat different power control and distribution

techniques have been employed:

69

e Centralized - a single unit or subassembly is configured to handle

all power line filtering, power control command decoding, power

switching and distribution to each block in the system.

* Decentralized - each block handles its own filtering and switching

upon receipt of a logic command.

A key factor in the design is the number of blocks involved. For a com-

plex spacecraft control system of long life and high reliability, it seems

likely that the number of blocks required will range from 20 to 50, with 8

to 20 of these being in the processor and the rest associated with

peripherals.

Any switching or processing circuitry functions that are decentralized to

each individual block are obviously going to be multiplied by the number

of blocks within the system. It is also obvious then that the most

efficient system of power distribution and switching will be one that

shares as much common circuitry as possible between the various blocks

and minimizes the parts dedicated to each block.

For example, consider the power control switch developed for decentralized

switching of dc secondary power in each block of the COPE processor. This

circuit is shown in Figure 3-6. Assume that the system has 40 blocks,

all using this circuit. Assuming half the blocks require + and - 15 volts

as well as + 5 volts, the total parts required for the switching function

(not including filtering) is:

Per circuit:

1.5 relays 60 relays

2.0 coil drivers 80 coil drivers

1.0 flatpack logic x 40 = 40 flatpacks logic

1.0 transistor 40 transistors

6.0 discrete parts 240 discrete parts

460 total parts

70

+5 V POWER
(ALWAYS ON)

TO 54LI0
+28 V RELAY POWER
(ALWAYS ON)

SWI HED + UNT ON BLEVEL
S E+5 V ON 0(FROM RCU)+ov I O0
POWER

L5 0K.

+ DPDT
33 FF LATCmNG 0I W Oa
T0 V RELAY

'INI]3 J6 _o

USE EXTRA RELAY CONTACTS FOR OTHER VOLTAGES (MF NEEDED)

Schematic Diagram of COPE Power Control Switch

Figure 3-6

Since each element contains all of its own switching circuitry, the re-

quired level of redundancy is automatically provided for. (This is not

necessarily true for a centralized power switching system because portions

of the circuitry are time shared between various elements.)

Figure 3-7 shows the mechanization of a centralized power switching for

the same system employing a matrix array of coil drivers for forty

elements requiring sixty relays. (This circuit was used on FLTSATCOM

for control system power control.)

With this arrangement, the relay coils are driven at the junctions of an

8 x 10 array of vertical and horizontal drivers. The NHO008 drivers

source current while the 5406 logic buffers sink current. The input

control of the relay coils is a 7 bit binary word.

The parts count is:

60 relays

8 coil drivers

7 flatpacks logic

2 transistors

106 discrete parts

183 total parts

The problem with this approach is that it is only partially redundant

and contains single point failures. A solution to this deficiency is to

replicate the complete switching system with a standby redundant unit.

Even though this doubles the parts count to 366 parts, it eliminates the

single point failure modes and is still lower in parts count than that of

decentralized control and provides a much greater degree of redundancy

than that approach. A redundant centralized matrix switching system

can have many failures that do not result in a loss of any circuitry

block. Most failures only result in a partial loss of capability in a

single switching unit which can always be provided by the redundant

unit.

72

INPUT LOGIC

POWER GATE 3 BITS I OF 6
AND CONTROL DOD
LOGIC DECODER

4 BITS Noo

1 OF 10 -2 i 2-2
DECODER

COIL Switc COhin ACroach1-10 1 - 1

Figure 3-7 Centralized Power Switching Approach

Another approach is that shown in Figure 3-8 . The control system ele-

ments are divided into two groups such that redundant elements are

always in separate groups; i.e., single standby redundancy puts one in

each group, double standby redundancyputs one in one group and two in

the other, triple standby redundancy puts two in each group, etc. The

switching matrix of Figure 3,7 is now cut in half from 80 coil drivers

(40 elements) to 40 coil drivers (20 elements), arranged into a 4 x 10

matrix. This reduces the original parts count to:

Each switching assembly:

30 relays 60 relays

4 coil drivers 8 coil drivers

7 flatpacks logic x 2 = 14 flatpacks

2 transistors 4 transistors

62 discrete parts 122 discrete parts

208 total parts

With this arrangement, it is necessary to utilize a particular power
switching assembly to turn on or off a particular element; however, this
should pose no significant problems to either ground command or processor

controlled reconfiguration of the control system elements.

This approach meets the requirements of no single point failure and pro-
vides a minimum of parts count to accomplish the power switching function.
A drawback is that there are a few failure modes that can wipe out up to
half of the system redundancy. On a numerical reliability basis, this
may be shown to be quite acceptable because of the small number of parts
involved; however, from a practical basis, it may be worthwhile to provide
the additional parts of the fully redundant, completely centralized power
switching and distribution system.

The approach used may not be the same throughout the system. For example,
it may be that the most important portions of the system (part or all of the
processor) may require decentralized switching to preserve the processor
modularity concept or because of the nature of the source of the control

74

POWER

POWER
COMMAND SWITCHING

ELECTRONICS

ELTEMENT

D 2A

PO ER

COMMAND ' 'INELECTRONICS

POWER

Figure 3-8 Group Switching Control

(reconfiguration) commands (the RCU, or equivalent). It may also be

possible to centralize this power control into the RCU (but not necessari-

ly with the same economies) while centralizing the peripheral power control

in some peripheral element, under control from the IOU.

Note that for centralized control the control signal should be a serial

word or words, decoded at the centralized location. For decentralized

control the control signal is one bit. This may be a bilevel (as assumed

in the circuit of Figure 3-6), discretes (which would simplify the control

of latching relays), a switched clock (dc or ac coupled; which might re-

duce the number of lines to those peripherals already requiring clocks),

etc.

The circuit shown in Figure 3-6 and as used on COPE uses latching relays

to reduce standby power, combined with a novel circuit to allow the bilevel

interface. Whenever the bilevel changes the relay switches. This is

accomplished using relatively few parts.

The type of power switch utilized in the controlling and distribution of

power to the various elements is of prime importance in terms of system

power efficiency, failure modes and effects and reliability. Some of the

candidate devices and circuits are:

* Relays

* Power semiconductors

* Power magnetics

Relays are the most commonly used devices for power switching and dis-

tribution systems. Historically, there have been a number of problems

associated with the application of relays in spacecraft and other related

aerospace hardware. Discussions with parts specialists and application

personnel lead to very little hard evidence of a reliability or wear out

problem associated with the use of relays if correct design and application

criteria are followed. Most problems are a result of not carefully con-

sidering the environment the relay is being subjected to. During recent

76

years, where proper care has been exercised in the application of relays,

there has been virtually no problems associated with their use.

In a power switching and distribution system utilizing magnetic latching-

type relays, the duty cycle of relay operation is near zero. From a

practical standpoint, the relays only get extensively exercised during

ground testing. In flight they would be expected to be switched only once

at power turn on (or maybe not at all if placed in the initial condition

before launch and turn on of the secondary power converters). Even in the

event of an automatic reconfiguration, any particular relay would not

likely be operated more than a few times. A few of the blocks will be

turned on and off during the course of the mission but the number of

operations is always expected to be much less than what would be con-

sidered significant in terms of relay wear out phenomena.

The principal advantages of relays are:

o Very high power handling capabilities and efficiencies.

This is due to low on contact resistance

0 Zero standby power in either the on or off condition.

Magnetic latching provides this feature

o The magnetic latching feature also provides for a "hard"

memory capability in a radiation environment or in cases of

power loss or transient

o Small size and weight. In general, a relay can handle higher

voltages and currents than other candidate devices of equal size

and weight.

The disadvantages of relays are:

o Some people say they are unreliable (probably because they are

electromechanical devices rather than solid state)

o Switching speeds in the 1 to 2 ms region (which is fast enough)

77

* Requires special attention in packaging design

Non-latching relays could also be used, but their constant power con-

sumption weighs against them severely.

The use of power semiconductors falls into two catagories:

* Straight on-off power switching

a Combined on-off power switching and regulation

On-off switching is straightforward and poses no special problems except

for failure mode design. It is desirable for the power switch to fail

in the off condition rather than on. This is particularly true if more

than one block is available in standby redundancy since an "on" failure

of the switch would be equivalent to failure of all blocks which are

redundant with the block controlled by the failed switch.

The semiconductor switch also has the undesirable characteristic of re-

quiring a voltage drop ranging from a few tenths of a volt to a volt in

the "on" condition. The voltage drop and corresponding power loss is

not insignificant when the total is considered. Any attempts to reduce

the power loss of the semiconductor switching circuit results in an un-

desirable increase in circuit complexity and lower reliability.

The combination of power on-off switching and active regulation has been

investigated as a means of letting the semiconductor switch perform multi-

functions and, therefore, possibly eliminate other active regulators and

filters in the system. As in the case for the on-off semiconductor switch,

the circuit complexity gets out of hand when all of the desirable design

criteria are met. If such a circuit could be made available as a one or

two chip integrated circuit, it might prove to be a desirable approach.

The use of power magnetics for on-off control of individual blocks has

been suggested in the past and certainly has merit from a conceptual

standpoint. In this case, the power distribution is by an ac bus. The

switching devices are reactors or transformers controlled by a dc current

to cause saturation of the core material. The ac power is then rectified

78

and filtered in each block, as required. If three secondary voltages are

required within the block, then six rectifiers and three filters would be

required in addition to the switching reactors and/or transformer and

current control circuits.

To our knowledge, this approach, while conceptually attractive, is not

competitive on a power efficiency or parts count basis with that of a

relay switching system. Like the switch-regulator, because the circuits

must be replicated for each block in the system, the parts count is pro-

hibitive if the switching circuit contains more than a few parts. For

the same reason, even a small power loss in the circuits can add up to a

very significant number if many circuit blocks are involved.

In summary, it may be stated that for control systems with a large number

of circuit blocks:

o Centralized secondary power generation, conditioning and switching

.can be implemented with less total system parts and is more

efficient in terms of reliability and cost

o DC secondary power distribution through magnetically latched

relays is also more efficient in parts count and power loss than

alternatives

o A matrix array for driving the power distribution switches greatly

reduces parts counts and allows for multilevels of redundancy

within the power switching circuitry.

3.1.3 Cross-Strapping Selection

In any system employing standby redundancy it is necessary for each block

within the system tb be provided with a means of communication with every

other block that represents a needed input or output interface. This

communication path is referred to as a cross-strap since it normally

represents signal paths in a lateral direction to adjacent replicated

circuits rather than end-to-end in the chain of signal processing. The

generalized requirements on the cross-strap circuits are:

79

Block Isolation. The cross-strap circuit should provide isola-

tion of failure modes between the blocks. In addition, the

cross-strap circuit itself should contain a minimum number of

failure modes that affect more than one element. The ideal

circuit will allow only one block failure per failure mode.

* Signal Path Switching. The control of the signal flow from one

block to another should be as simple as possible. The ideal

circuit allows communication only between blocks that are

powered "on" and essentially ignores blocks that are powered

"off".

* Signal to Noise Ratio. The cross-strap circuit should not de-

grade noise margins to less than that of a single noncross-

strapped system. In logic interfaces, the waveform rise and

fall time should not be appreciably degraded.

* Circuit Simplicity. The cost of cross-strapping many small

blocks can become prohibitive if the cross-strap circuit repre-

sents an appreciable part of the individual block complexity.

If a complex circuit is employed, the reliability gain of the

standby redundancy approach is eroded and the system parts

growth can have significant effects on size, weight and manu-

facturing cost. Circuit simplicity must be balanced with the

other desired performance characteristics.

Generally speaking, a reliability diagram for a number of cross-strapped

elements will be as shown in Figure 3,9 . Each replicated block of an

element has its own failure rate x(x) and to it must be added some portion

of the failure rate of the cross-strap circuit. In some cases, there can

be a portion of the circuit that represents an in-line failure rate and

cannot be allocated to an element and is shown as cs. A single point

failure mode is obviously in this class; however, there are others as

will be shown later in the detailed circuit descriptions. In the

example, only one input and output to each block is shown (the minimum

possible) for the reason of clarity. It should be realized that any

number of inputs or outputs to a given block may be required. For

80

S- - 8 2B 3B --

I1B IB 3

XI I I iI

3 -X- 1 X1C __ 2C . 3C L- 3

Figure 3-9 Typical Element Cross-Strapping

(with single-point failures)

ORIGINAL PAGE IS
OF POOR QUALITY

1A 2A 3A

18 28 3B

I I I

1C - 2C F - 3C -
1 _2 3_

Figure 3-10 Typical Element Cross-Strapping

(without single-point failures)

81

example,a block may require a single input and one hundred outputs, each

to a different block or all to one or any other in-between combination.

The obvious restriction is that if the number of inputs and outputs is

too large, the requirements of simplicity cannot be met and the system

must be repartitioned to reduce the number of element interfaces.

As shown, the replication of elements in the vertical direction (blocks

per element) will generally be two or more while the number in the

horizontal direction is determined by the total system requirement and

choice of partitioning to control the size of individual element failure

rates.

The cross-strap circuitry must always provide a signal path from any

particular block output to the input of all replicated blocks it is feed-

ing. For example, there may be only two number one blocks (1A, 1B) and

five number two blocks (2A, 2B, 2C, 2D, 2E, 2F), etc. As can be seen,

the ideal arrangement from a reliability standpoint would be an individ-

ual circuit path from output IA to each of the number two block inputs

and the same for output IB. This would result in a large amount of wiring

between elements, which is particularly undesirable if the elements are

physically separated. A signal busing system with its own level of

redundancy is the more optimum cross-strap for such cases.

If the cross-strap circuit meets the requirements of no single point

failures and only one block being lost by any single failure, then the

failure rates of the cross-strap components can be divided and summed

with the failure rate of a particular block and shown as in Figure 3-10.

It should be noted that quite often a particular part may be physically

located in one block but its failure would actually result in a loss of

a different block; therefore, its failure rate is assigned to the latter.

3.1.3.1 Digital Logic Cross-Strap Circuits

The digital logic cross-strap is the most often encountered requirement

in large systems with a high degree of redundancy. There have been a

great many different circuits developed and used with varying degrees of

success. In many cases, the designs were initially inadequately analyzed

82

and later were shown to have poor performance characteristics or subtle
failure modes that compromised system reliability. In general, there are
two ways to cross-strap logic:

o Direct dedicated signal path between each block

o Busing where the signal path is shared by more than one block.

The first is generally employed in systems involving single standby
redundancy while busing tends to be more efficient in multiple standby
redundant systems. The number of lines which must be cross-strapped
are often also an influence.

The following circuits are representative of the different approaches
and the trade-offs for digital (non-busing) signals.

Circuit-1, Figure 3-11. This approach to a cross-strap is a simple
hard wire OR of the output and inputs of the four logic elements. It
represents the minimum of circuit complexity, particularly when no
special output or input buffering is employed. Either block IA or IB
can communicate with block 2A or 2B through the single wire connecting
blocks 1 to 2. There are two special requirements imposed on the use
of this approach:

o Either block IA or 1B may be powered "on" but not both. The
normal T2L logic parts are not normally capable of a wire OR
configurati on.

o The logic circuits employed must be capable of having their
outputs pulled up to a logic "1" level when power (V cc) is
not supplied to the element. (This requirement will be common
to several other cross-strap circuits to be presented.) This
requirement should not be confused with the so-called tri-state
logic, who's outputs can be pulled to a 1 level with power
applied to the logic element. The ability of a particular
logic element to have its output pulled to a high state with
no power applied is unique to the chip design of its output

83

I I

Block IA Block 2A _
--- 1 H-

Block 1B Block 2B

Figure 3-11

Cross-Strap Circuit 1

R I

Block 1A -V Block 2A

Block 1 - Block 2B

I I

Figure 3-12

Cross-Strap Circuit 2

84

stage and is different for different families of T2L logic.

For example, the TI series of low power T2L has this capa-

bility while the Fairchild 93L series does not (it has an

internal resistor connected between output and Vcc.). It

should be noted that this characteristic is not a parameter

covered by the normal device specifications.

o In addition to providing the lowest complexity cross-strap,

this approach provides the minimum wiring interface between

the blocks. The obvious disadvantage of this approach is

that it contains a number of single point system failure

modes. A short to ground or V of any one of the four blocks
cc

or a short or open in the wiring between the four blocks

will cause loss of the complete system (assuming a mission

critical signal path). This is usually an intolerable con-

dition in large, long-life systems where individual block

failure rates must be low (in the 2K to 4K bit range). A

seemingly low failure rate in a nonredundant path will often

turn out to be very significant in the overall total system

reliability (see Section 3.1.1). Usually, top systems

specifications rule out any designs that have single point

failure from active components.

Circuit 2, Figure 3-12 . This approach has been used in several cases

and eliminates the single point failure modes of the active components

of circuit 1. It does not, however, eliminate the single point failures

from opens or shorts in the wiring between units. Protection against

opens, at the expense of increased probability of shorts, can be pro-

vided by an additional wire between units as shown in the dotted line.

The diodes in series with the logic element inputs and outputs provide

the isolation to protect against a short of the logic circuit to either

ground or V cc A short of the diode will have virtually no effect on

the block the diode is located in; however, it will fail the adjacent

block if the logic blocks inputs or outputs cannot be pulled high with

power removed.

85

The circuit does preserve good noise margins; however, it has the dis-

advantages of being somewhat complex and has poor fall time waveform

response unless the pulldown resistor R is made small, which makes it

inefficient in power.

Circuit 3, Figure 3-13. This cross-strap circuit is made up entirely of

standard logic elements and meets the requirement of no single point

failure modes as well as only a single block failure per cross-strap

circuit failure. Also, there are no performance compromises to noise

margin and waveforms. The major disadvantages are circuit complexity

and the amount of interface wiring required. There are four wires in

the horizontal signal path (which is generally more costly than adjacent

signal paths) and one control wire to tell each receiver which sender

is providing data. The control logic signal is obtained from the same

signal source that enables power to the sending block.

Circuit 4, Figure 3-14 . This logic cross-strap circuit is similar to

the previous one except that no selection control logic is required. In

addition, it is somewhat simpler in that the receiver requires only a

single 2-input gate circuit with a pull-up resistor on each line. The

pull-up resistors can be obtained thirteen to a flatpack integrated

circuit so the cost in circuit board area and volume is minimal.

This circuit,like circuit 1, requires the capability for the logic circuit

output to be pulled high with power "off". This function is provided

by the resistor R which need only supply a few microamperes of leakage

current at the block output. All single point failures are eliminated

and any single failure only results in the loss of a single block. Four

interface wires are required; however, this is necessary in all cross-

strap circuits that meet the criteria of limiting all single failures to

a single element. In-addition to being relatively simple and completely

automatic in signal selection, the circuit does not degrade noise margins

or waveform characteristics. This circuit probably represents the best

compromise between the various performance requirements and complexity

for cross-strapping single standby redundant systems.

86

Block IA Block 2A

Block 1B Vcc Block 2B

Figure 3-13

Cross-Strap Circuit 3

Vcc

Block IA Block 2A

Block 1B Vcc I Block 2B

R R

Figure 3-14
Cross-Strap Circuit -4

87

3.1.3.2 Digital Busing Cross-Strap Circuits

Busing-type cross-strap circuits tend to be more efficient whenever there

is multiple redundancy (dual standby or above) or where ever there are

many elements interfacing with the same signal lines, such as in the pro-

cessor, where most of the elements can interface with the same internal

signal lines. For example, each address line goes to each memory block,

as well as the ACU.

Pircuit 5, Fiqure 3-15 This circuit shows the arrangement of a re-

dundant bus system employing standard T2L logic gates. The selection of

the bus in use is made by a bussed logic signal to each receiver. The

circuit shown is for a single logic bit and two more bus lines are re-

quired for each additional logic bit at the interface. The number of

blocks that can be replicated is limited only by the fan-in and fan-out

loading of the logic employed. As in the single standby redundant cross-

strap systems, the selection of the elements in use is done by the

application of power to the block.

From a reliability standpoint, bus cross-strap systems must be treated

differently than single standby cross-straps. Each bus and all the

circuitry connected to it must be treated as an element itself and placed

in series with the reliability calculations.

It is possible to also extend the redundancy of the busses by providing

additional output drivers and receivers in each block along with

additional bus selection lines and logic. Such a requirement is not

likely for just cross-strapping replicated elements. It may, however,

be a requirement for a data bus system, such as a processor input/output

that is servicing a large number of different blocks.

Circuit 6, Figure 3-16 . Often the power consumption of the gates used

in the cross-strap circuitry is of considerable importance. For the bus-

ing type cross-strap of Circuit 5, this power can be reduced to half by

using power gating. The bus select signal allows the power to be turned

on to half the senders and receivers at one time. In terms of input

loading, an off receiver should be counted as one-half its normal load in

the high state and as no load in the low state. The output of an off

88

Block IA Bloc

Block 1B Block 2

jP i--

Block IC Bloc

o- -- aU9 -OD

Figure 3-15
Cross-Strap Circuit 5

89

II 2A
- I -

L [V I I'-

A Enable Vcc II Vcc
1A 2A Blodk 2A

cc I IVcc
1B C 6 2B

1B Enable Vcc I cc
F"---0 M 2B18 m m 2

Figure 3-16

Cross-Strap Circuit 6
90

receiver should be counted as one load in the high state and as no load

in the low state.

Here the transistors gate the power into all the senders (or receivers)

associated with the particular bus, Care must be used to segregate this

division of gates within each block. Note that two lines are shown in

this example. Only the two power gate circuits need be used for each

block, no matter the number of senders and receivers (within transistor

power limitations).

This is the circuit used for the internal bus of COPE. It is quite easy

to see how bussing can reduce the number of parts (and wires) for the

more complex systems.

Circuit 7, Figure 3-17. Another approach that can be used is the triple-

redundant cross-strap with voting. All three buses are actively driven

by the powered on block and majority voting is used by the powered on
receiver(s) to determine the correct logic state.

Note that for any of the bus approaches, the bus may be either uni-

directional relative to signal flow, or bi-directional. Bi-directional

flow can only be accomodated if the information sources are controlled

in a manner so that two sources will not be trying to put out infor-

mation on the same line at the same time. The use of bi-directional

buses can save lines.

It should also be noted that the buses discussed here are not the

elaborate data bus systems such as proposed for space shuttle and other

very large systems where the propagation delay from one end of the space-

craft to the other at the high bit rates is important or where wire

weight of long runs is ruling. That type of system usually goes to

single-wire bi-directional buses involving totally serial data inter-

change using self-clocking coding (Manchester or equivalent) and modem

interfacing. Such systems are not needed for the control systems of

moderate sized spacecraft.

91

Block IA ' Block 2A

I I

S S2A

I I

SB - S2B

I Ii I

Block 1C I Block 2C

I .

sic Bo S2C

Figure 3-17 OIGVAL PAG
Cross-Strap Circuit 7 Op p Q9

92

3.1.3.3 Analog Cross-Strap Circuits

Analog cross-strapping should be avofded if possible due to its complexity.

If needed, there are proven methods that are available and have been used.

Usually the best approach is to switch the signals at the receiving end,

under the power control from the sending end, using FET switch analog

modulators. An example of such a circuit is shown in Figure 3-18..

Two sending blocks and two receiving blocks are shown for one analog

signal. The analog signal from block 1A is sent to both receiving blocks,
as is the signal from block lB. Since only 1A or 1B can be on, the

digital control signals are also sent across to control the FET switches.

The combined load (of 50K) is well within the driving amplifier capability.

This circuit has no single point failure. So-called analog switches, w

which have all of the drive circuitry within the DPDT package, can also be

used.

Completely passive analog cross-strap circuits have also been invented, but

they are usually inefficient and do not seem to possess any particular

advantage over the circuit of Figure 3-18.

93

100 K S D 100 K

VCC (2A) (2A)G 10.5 K

VC (A)
64 K

BLOCK A 332 K D

* I

mLOCK 2A m

m Vc U

100 K S D 0 K

i I I

* (B

BLOCK 3.32 I

K I

' Icc .

m I

100 K D K I

* BLOCK 2B

Analog Cross Strap Circuit

Figure 3-18

mI mmm mm mi- pmmmmmmImmmmmmmmmmmmmmimmmm~m
m *K I0 I-"

Figure 3-18

3.1.4 Redundancy Management

Without discussing for the moment the problems of fault detection and
diagnosis (see Sections 3.5.5, 3.7.4 and 3.7.5) let us

assume that faults can be reliably detected by combinations of hardware
(BITE) and software techniques.

We shall assume that all of the peripherals and the majority of the
processor is organized using standby redundancy. There will be some
portion of the processor that will need a passive redundancy (the so-
called "hard core"). All other parts of the system must be controlled
or managed from some higher-level decision-making portion.

There are several ways in which the redundancy of the system can be
managed. Some of these management systems which have been studied are:

o Centralized Hardcore System, Fixed
o Centralized Hardcore System, Bootstrapped
o Distributed Hardcore System, Bootstrapped
o Distributed Hardcore System, Parallel
o Distributed Computer Network

These systems will be briefly described in the following sections.

3.1.4.1 Centralized Hardcore System, Fixed (Figure 3-19)

Here the hardware is the system element that must function correctly for
detecting failures in all system elements (possibly excepting peripherals)
and performing reconfigurations. Reconfigurations are performed by
following a hard-wired combinational approach which continues until the
hardcore receives signals indicating that the system is in normal
operating conditions. Performance monitoring is on the basis of software
and hardware fault signals exclusively. The reconfiguration sequence can
be structured in various ways, depending on speed of recovery and hardcore
complexity considerations. The approach used in COPE starts by switching
redundant units of different types, one at a time, until all types have
been tried. If this process fails, a more comprehensive sequence is

95

System

HARDCORE

ACU'S IOU'S ROM'S RAM'S PWM's Other DBS's Peripherals

DDDDD DI I

Figure 3-19 Centralized Hardcore System - Fixed

Level 2

HARDCORE

ACU'S ROM'S DBS'S IOU'S RAM'S PWM'S Peripherals

LID LII OEID
Figure 3-20 Centralized Hardcore System - Bootstrapped

96

followed , where all possible combinations of redundant elements of
different types are tried.

3.1.4.2 Centralized Hardcore System, Bootstrapped (Figure 3-20)

Hardcore is defined here as that portion of the system that must function

correctly to detect failures in Level 1 components and software and to

perform reconfigurations. After the hardcore determines that the essential

functions performed by Level 1 components are correct, both the hardware and

and Level 1 elements are used to test elements in Level 2. If recon-

figurations are necessary, they are performed by the hardware upon request

from the Level 1 system. After successful completion of tests, normal

operation starts. The hardcore monitors performance either by means of

fault signals or by periodically interrupting operations to repeat boot-

strapping procedures, or by means of a combination of both methods. The

Level 1 components are considered to be the "primary processor".

3.1.4.3 Distributed Hardcore System, Bootstrapped (Figure 3-21)

In this approach, the hardcore functions are limited to monitoring the
performance of any of the active Level-1 elements and switching redundant

units in operation in case of failure, Each of the Reconfiguration Control

Units in Level 1 performs diagnostics and reconfiguration of the elements

in Level 2 which, when operating correctly, are used to test and recon-
figure, if necessary, the equipment in Level 3. This concept has the

advantage of minimizing the number and extent of the hardcore functions,.

which are normally made highly redundant to provide sustained operation

under failure.

A slightly different version is shown in Figure 3-22 . This differs

from Figure 3-21 primarily in that the IOU is shown as a separate level.
The primary processor would utilize the IOU to control the configuration

of all Level -4 components

97

Level 3
Level 2
Level 1

Hardcore

RCUs

ACU'S RO'S DBS'S IOU'S RAM'S PWM'S Perinherals

DDE D] _1

Figure 3-21 Distributed Hardcore System - Bootstrapped

evel 4
Level 3

i evel 2
Level 1

HCU

RCU',

ACU'S ROM'S DBS'S ' 'S PWM'S inh

Figure 3-22 Distributed Hardcore System - Bootstrapped
(with separate IOU level)

98

The hardcore is here called a Hard Core Unit or HCU. The RCU's are in
standby redundancy to each other, with the RCU selection (management)
being accomplished by the HCU.

3.1.4.4 Distributed Hardcore System, Parallel (Figure 3-23)

This approach was originally proposed by Forbes et al, [9], and it was
implemented in the IBM DX-l computer. In the Level 1 components, the
control and arithmetic elements are partitioned into two identical groups
each working with half a word. During normal operation the two portions
act in parallel performing operations on full-word operands. During
diagnostics, these partitions operate independently to test each other.
The hardcore includes the comparison and switching circuits and the
common microprogram memory that controls the partitions. This hardcore
is claimed to be about 10% of the DX-l machine. Whether the system is
truly distributed or not depends on the approach used for switching from
one Level 1 machine to the other. This concept is probably more easily
implementable in a machine designed on a bit-sliceable basis (byte
organized).

3.1.4.5 Distributed Computer Network (Figure 3-24)

This concept was proposed by Preparata, Metze, and Chien [10]. This figure
shows diagnostic relationships between elements. E.g., U0 diagnosis U1,
U1 diagnoses U2, etc. This implies that U accesses U1 , then transmits the
patterns into U2 and obtains responses which are compared to prestored
fault-free responses and the results are transmitted to other subsystems.
This assumes that a majority of these subsystems are fault free. The
scheme can be implemented by either software or microprogramming. Such
a system is unnecessarily complex for a spacecraft control system.

99

Level 1 Level 1

SACUS -ACU's
BS, Hard Hard DBS'S

Core Core

Z D ROM' S - ~ ROM' S

IOU'S RAM'S PWM'S Othe Pe phm

Figure 3-23 Distributed Hardcore System - Parallel

0.-

Figure 3-24 Distributed Computer Network

100

3.1.4.6 Selection of Management Approach

Of the preceding approaches, the bootstrapped distributed hardcore system
of Figure 3-22 seems to offer the most advantages for application to the
spacecraft control systems. These advantages are:

o Minimization of hardcore (HCU) functions with resultant

simplicity of HCU design and lowering of the TMR overhead

to its absolute minimum.

o Reduction in tasks for the RCU's, by removing all but the

primary processor (ACU, DBS & ROM) and the IOU control
from the RCU.

o Control of the RAM, PWM & all peripherals through the IOU,
under software management. These controls are through the
normal outputs (bilevels or serial) of the IOU.

o The possibility of using centralized power control for most
of the system is available (see Section 3.1.2).

The requirements for the RCU and HCU are discussed in Section 3.7.6. It
should only be noted here, that the HCU need only detect faults in the
RCU and then substitute the standby RCU for the faulty one. There are
only three types of possible RCU faults. These faults lead to:

o A failure of the RCU to detect a primary processor fault
(through its own faulting).

o A failure of the RCU to act to correct a detected fault (to
reconfigure the primary processor).

o The RCU causes a reconfiguration to occur, even though no
processor faults occurred.

The management of the available RCU's by the HCU is exactly analogous
to the management of the processor by the RCU. Note that the HCU is TMR,
with output (the power control signals to the ACU's) voting.

101

3.2 Control System Design

The control system design process is multi-faceted, encompassing functional

characteristics, operational characteristics, and system interfaces. This

section deals briefly with these elements of control system design specifi-

cally in relation to the implementation of fault-tolerant system design.

3.2.1 Control System Implementation

The control system is configured of sensors and actuators which are opera-

ted on by the fault-tolerant attitude control electronics to implement the

mission requirements. The overall system design is developed to result in

well defined performance characteristics. At the top level, this is ac-

complished by careful definition of the subsystem functional and operational

characteristics, i.e., the control modes, the sensors and actuators used

for implementation, the control processing required, and a review that all

mission functions are achieved within this framework.

Control system modes are established to encompass a well defined system

functional capability, and are therefore functionally unique and mutually

exclusive. In other words, performing a certain control system function

implies operation in a particular control system mode and vice-versa. This

characterization results in the implementation of mode logic, i.e., the on-

board process by which the control system makes decisions as to what to do

in response to external stimuli such as commands, sensed performance

criteria, etc.

It is key that there be no confusion as to the control system operational

response to such stimuli. In implementing a fault-tolerant control sys-

tem, such decision processes are especially critical and must be carefully

developed.

This process, relative to the control system of interest as outlined in

Section 2.1.1, is summarized in the chart of Table 3-4. In this case,

a standby mode, five operating modes, and a backup mode have been defined.

Within this structure there are also defined what may be called submodes,

i.e., use of equipment or functions which are not of themselves mode/

function unique, but are more related to the level of performance (e.g.

accuracy) achieved. This encompasses: 1) selected use of wheels or RCS;

or 2) selection of fine or coarse sun sensors.

102

The standby and operating modes were briefly summarized in Section 2.1.1.
The backup mode is an "escape mode" in the event of critical failures por-
tending power loss or gross errors in attitude control system performance.
The objective is similar to the sun acquisition function of the Acquisition
Mode, but the control is mechanized in special-purpose hardware external
to the primary fault-tolerant electronics to relieve dependence on as much
hardware as possible.

This backup mode is reached from any other (except despin) mode via mal-
function indication logic. Malfunction indication is provided on-board with
regard to critical performance measures (which may be mode related) but
which are an integral part of the overall fault-tolerant design. This arises
since the priority to reconfigure and recover via the fault-tolerant sys-
tem design criteria is clearly higher than entry into a back-up mode in
the event of control system failures. Backup malfunction indication logic
must therefore be developed which is not at cross purposes with the overall
design. Indication of continued low power, signals from the fault-tolerant
electronics reconfiguration logic, or ground override are each valid ele-
ments of such logic.

This mode framework, although structured relatively rigidly, provides a
great deal of operational flexibility. This is noted by considering the
operating regimes defined in Table 3.4,the mission timeline outlined in
Section 2.0, and the mode flow diagram of Figure 3 25. This figure develops
the paths by which mode transition may take place. Certain characteristics
can be readily noted (e.g. limited exit/entry to/from certain modes), but
details of actual mode logic to implement mode transition keys upon a
variety of factors, including:

o Assuming equipment to be used is in an operational "GO" status
o System within performance boundaries essential to performance in the

selected mode-

o Command override: force-in/lock-out type operation
o Nature of autonomy and interaction with fault-tolerant system con-

figuration control

Implementation of the control modes is performed within another functional
framework characterized by division among meaningful processing functions.
This is identified in the control system functional block diagram shown in

103

TABLE 3-4

CONTROL SYSTEM

FUNCTIONAL/OPERATIONAL CHARACTERISTICS

OPERATING REGIME MODE SENSORS PROCESSING ACTUATORS

* Preflight Standby --- Quiescent/Status
* Launch
e Other as Commanded

* Despin Despin Gyro(s) Rate Control for despin axis Despin Thrusters

• Sun Acquisition Sun Acquisition * Sun Sensors * Sun Acq. & lock in 2-axes Thrusters

* Canopus Search/Acq. e Roll Gyro * Rate Control w/bias about
sunline

e Cruise Celestial Point * Sun Sensors * Sun Point w/bias in 2-axes Thrusters or
SStar track constraint for Reaction Wheels

orientation about sunline

* Reorientation Inertial Point * IRU * 3-axis stabilization based Thruster or

* Control during fly-by upon inertial derived Reaction Wheels

* Cruise (as desired) error signal

• Velocity Change TVC * IRU • Thrust vector control in Vane Actuators
2-axes plus Thrusters

@ Roll control using RCS
* Control of thrust period

based on accelerometer
output

* In event of Backup i Wide-angle * Sun acquisition & lock in Thrusters

catastrophic Sun Sensors 2-axes
failures a Quiescent control about

I sunlineI ___ _________________________________

From To
all STANDBY all CELESTIAL
Modes Modes POINT

C DESPXH INERTIAL
SACQUISITION POINT

THRUST
From all Rodes VECTOR
Except Despin BACKUP CONTROL

Figure 3-25 Control System Mode Switch Paths

Figure 3-26. Consider initially the sensor functions as observed at the

processing interface:

* Sun sensors: two-axis measure of sun-line relative to the sensor de-

fined coordinates.

* Star Sensor(s): two-axis measure of star line of sight relative to

the sensor defined coordinates

* Inertial Reference Unit:

- gyros provide inertial rates and/or (incremental) attitude as measured

about the inbound input axis.

- accelerometer provides acceleration (or incremental velocity change)

along the sensitive instrument axis.

Likewise, the actuator functions as seen at the interface comprise:

* Reaction wheels:

- reaction torque in response to drive signal

- wheel speed measure, i.e., tachometer

a TVC vanes:

- vane deflection in response to drive signals

- measure of deflection angle

e RCS thrusters

- thrust of fixed magnitude whose duration is in response to control

signal

e Scan Platform Actuators:

- actuator gimbal torqued in response to drive signal (two-axis)

- platform gimbal angle measure in each of two axes

The means by which these interfacing signals and the sensor/actuator sup-

porting functions are processed must be considered within the functional

design of the control system. It appears to be particularly key to main-

tain an interface of low volatility (e.g. avoiding requirenents of memory)

and minimum complexity. In allocating the functions to be performed with-

in the processor, it is desirable, in most cases, that not any one function

became the demanding driving requirement on computer speed, e.g. "tail-

wags'dog". Al-though this may happen in certain cases (e.g. a function

106

Coarse Backup
Sun Sensor Controller

Fine Sun
S Sensor- Sensor

Prosessing
Attitude Thruster Thruster 1 CS
AError -- Control Select rsters
Processi ng Laws Logic

Star [Star

Sensor Sensor Romentn
ensor Pocessing Desaturati n

.eartial Hheel heel ReactionFnertial Sensort Controlou Drive hnlrs
snsor$g Laws

Thrust
a.i netry Vector TC

Cotan d '"es Vanes

Processing Kde

Scan Platform
I Tel try Platform ctuators

Cmmnnds Control

Sensor Sota FuncActuator
Functions SoFa Fcns unctions

Figure 3-2G Control System Functional Block Diagram

must be performed within the processor), it is of particular concern if the

function is one of a secondary nature or one which might be done as easily

within special purpose electronics. Some of these type of functions have

already been mentioned, e.g. sensor (high bandwidth) preprocessing, actua-

tor servo logic, real-time clocking functions, etc. By relieving special

burdens from the processor, the designer in general relieves potentially

significant hardware constraints (e.g. speed) and software design com-

plexity (e.g. asynchronous executive, very short minor cycle, etc.).

Design guidelines frequently establish the processor minor cycle on the

basis of the overall (e.g. primary) control loop bandwidth requirements.

When sampling (bandwidth) of much greater frequency is required the related

functions should be performed external to the processor unless significant

reasons exist to do otherwise. Thus, the design presented here performs

actuator servo loops (e.g. jet vanes, scan platform drive, wheel tach loop

(if used)) and thruster pulse period clocking (e.g. thruster shut-off fol-

lowing turn-on with commanded ON-time) in associated special purpose

(auxiliary) electronics. Sensor tracking loops (e.g. star sensor) or pulse

count data collection (e.g. gyros, accelerometers) is also done within the

specific peripheral device electronics. Analog IRU rate signal outputs

have also been presumed.

The processor functions are briefly addressed, as these representative

elements are used in the next section to characterize the computational

requirements.

* Sun Sensor Processing - sun sensor outputs are input, scale factor

and bias characteristics are incorporated and required (desired)

prefiltering) of data is performed.

* Star Sensor Processing - logic is processed from which stars within

the star sensor field-of-view are acquired/tracked by the sensor,

star sensor outputs are input, scale factor and bias characteristics

(and other compensation of systematic errors) is incorporated, and pre-

filtering of star sensor data is exercised.

* IRU Processing - gyro outputs are input and compensation made for

input axis alignment, scale factor, and bias. The compensated gyro

data is used to compute inertial attitude and rate. The IRU computation

108

of attitude (and other compensation parameters, if appropriate) is

periodically updated from star sensor and sun sensor data. Accelero-

meter outputs are integrated as appropriate and compared to a com-

manded velocity change to provide signals for AV thruster commands.

o Attitude Error Processing - the measured attitude relative to the

attitude reference (e.g. sun, known star, inertial depending on mode)

is combined with the commanded value (desired orientation) to derive

attitude error signals (position and/or rate) for use by the control

system. Spacecraft (large angle) maneuvers use stored commands via

this error processing function to execute reorientation.

o Wheel Control Laws - use derived error signals within appropriate

control algorithms to derive reaction wheel torque commands (in each

control axis).

o Thrust Vector Control Laws - use derived error signals within control

algorithms to derive TVC actuator vane deflection commands.

o Thruster Control Laws - derived error signals are utilized in control

algorithms to command RCS thruster modulation "ON" time.

o Scan Platform Control - stored commands are processed to point the

scan platform as a function of time.

o Wheel Distribution - for reaction wheel configurations in which the

wheel axes are skewed with respect to the control axes, the geometric

gain relation is computed and output/interface processing accomplished.

o Momentum Desaturation - The wheel speed is measured to determine

stored momentum. The stored momentum is compared to threshold values

above which wheel unloading using RCS thrusters is commanded. Thruster

"on" time is determined.

o Thruster Select Logic - control axis and thruster "ON" commands are

used within selection logic to enable/fire the appropriate thrusters.

Output/interface processing with the RCS is accomplished.

3.2.2 Functional Redundancy

Control system functional redundancy, within the present fault-tolerant

concept is defined to mean the accomplishment of the desired objective

109

(e.g. cruise control) via a means which is alternative to the primary

approach. Functional redundancy can be achieved in one of several

fashions, namely: alternate modes, different control laws, substitution

of system components. Each will be addressed in turn. In general, it

is desired to meet the performance requirements throughout the regime of

functional redundancy. The implcations of this latter point will be ad-

dressed subsequently.

As seen in Table 3-4, there exists flexibility within the control system

design to utilize alternate modes during the various flight regimes. In

fact, providing this flexibility of function was one of the driving fac-

tors in defining modes and associated mode logic. A key example is using

either the Celestial Point Mode or Inertial Point Mode during cruise (and

fly-by with appropriate consideration of the earth-spacecraft-target

geometry). Thus, failures of complete redundant sensor systems (sun

sensors, star sensors, or gyros) need not be catastrophic as there exists

this functionally redundant capability. Failures of modes themselves can

be provided with functional redundancy, albeit with some potential opera-

tional handicaps. For example, failure of the acquisition mode logic may

be circumvented through use of the Inertial Point Mode. With orientation

commanded for (roll axis) sun pointing, step rotation maneuvers about the

sun line may be exercised until the star sensor locks on to the desired

target star (at which time the Celestial Point Mode could be entered, if

desired).

Another means of functional redundancy is obtained through use of alternate

control laws. For example, if the reaction wheel control laws are flawed,

use could be made of RCS or TVC control laws, as the form of the algorithms

may be expected to be similar. Other means of functional redundancy in-

clude the flexibility inherent in choice of sensor and actuators for a

given mode. Substitution of fine sun sensors for coarse sun sensors (or

vice-versa) or of thrusters for reaction wheels (or vice-versa if momentum

unloading capability remains) provides an enormous leverage capability.

As a result of these approaches, it becomes clear that one need not want

for elements of functional redundancy. However, the key question remains

as to the effectiveness and/or cost implications associated with such

techniques.

110

The first consideration is the desired autonomy to exercise functional

redundancy. The complexity of software executive and mode logic functions

to provide such capability weigh against other fault-tolerant design

criteria for which simplicity and constrained behavior are virtues. Exer-

cising functional redundancy also requires a system modularity introduced

at a level which supports such wide operational flexibility. In a manner

similar to the impact of autonomy, this level of modularity may be un-

realistic when weighed against other dictates of hardware/software modu-

larity (addressed in later sections).

Finally, there exists the real consideration of degraded performance and/

or additional "cost" in the operating regime. This can take form with

respect to a variety of interacting criteria including accuracy, rate of

expendables, and power consumption. For example:

o Substitution of RCS thrusters for reaction wheels will cost propellant

(expendable) to maintain performance near the normal (reaction wheel)

level of accuracy (or reduced accuracy to minimize loss of expendables).

o Substitution of wheels for RCS or gyros for star sensor/sun sensor

requires (potentially large) power increases - a key factor for

nominally power constrained systems such as deep space missions using

RTG's

In this same vein, the Backup Mode provides functional redundancy only in

the sense of maintaining minimum orientation constraints. Such items in-

clude the coarse antenna pointing for communication, attitude for thermal

constraints, etc. The key function, then,is preserving a process "external"

to the fault-tolerant system structure to recover from catastrophic failures.

The well-defined return path from Backup Mode provides a meaningful point

from which to reset from a known quantity. It is noted, however, that an

"external" backup mode is not essential to the fault-tolerant system de-

sign, but provides'more in the way of a response to engineering judgement.

In conclusion, functional redundancy at a reasonable level (e.g. modes,

some component substitution) which is relatively straight-forward as regards

implementation appears well advised. Dependency on extensive functional

redundancy as regards total system tradeoffs appears somewhat mission

dependent and demands mission-to-mission reassessment. System-level

111

functional redundancy in lieu-of or in-combination-with other techniques

(e.g. hardware component or software module replication) provides another

factor/means for maximizing fault-tolerant performance potential while

minimizing key criteria of size, weight, power, and cost.

3.2.3 Interface Definition

The primary control system interfaces include: the Reaction Control System

(RCS) for operation of thrusters, isolation valves, heaters, and associated

malfunction logic: the command and telemetry systems for command, telemetry,

timing/sequencing functions, and mission-related data store; and the elec-

trical power system (EPS) for essential and non-essential power allocation/

distribution. Essential bus power is provided for failure mode operation.

All other control system power is obtained from the non-essential bus.

The implication on the electrical power system (e.g. providing essential and

non-essential power buses) is not explicitly dealt with in the scope of the

effort.

Control system elements for the RCS typically provide valve driver outputs,

28 volt coil enable switching, isolation valve power switching, and heater

control (if required). Key other considerations are defining RCS related

fail-safe and/or fault tolerant logic (see Section 3.2.4), and signal inter-

face for valve selection/enable. The latter is important to the extent

that it is desirable to put any "memory" (e.g. thruster ON-time) in a

location external to the processor - I/0. For example, the processor - I/0

interface would be a digital word in which the selected thrusters and ON-

time are identified. RCS logic (within the control system electronics)

would use the data to enable selected thruster firing and clock count-down

of the commanded ON-time.

The control system command interface may actually result in a distributed

interface structure. This arises since there is such a variety of functions

which must potentially be performed. Processor memory data may utilize

a DMA port or separate command channel, depending on speed and/or processor

configuration. Control system commands may be expected to operate through

a serial command bus with control system command decoding/processing under

processor control. Pulse commands may operate through another I/0 inter-

face. Separate command structure also appears desirable for hard-core,

112

Reconfiguration Control Unit or other direct/override commands and/or

power switching commands, and for operation in the backup mode function.

The telemetry interface is important to permit determination of status and

performance on the ground. This is true even with the long data trans-

mission time for deep planetary missions. Status data and engineering

data which is not used for functional performance purposes or for fault

detection (e.g. motor current, temperatures) is interfaced directly.

Data available within the processing electronics may be manipulated into

a variety of formats (e.g. depending on mode or certain hardware status)

and output at the processor - I/0 telemetry interface. The telemetry

interface should be asynchronous with the processor - I/0, with self-

developed sync pulse, read envelope, and data clock. The processor- I/O

interface .requires only serial inputs, while telemetry interface

to other elements (e.g. sensors, actuators, RCU, etc.) will require analog,

bi-level, and serial inputs.

Typical elements of control system command and telemetry lists are capsulated

in Table 3-5.

TABLE 3-5. Typical Control System CMD/TLM List Elements

Commands Telemetry

Mode Select/Override Sensor Data

Configuration/Power Switch Sun Presence

Processor Memory Load Logic Status

Subcom Select Enable Status

Heater On/Off Configuration Status

Star Sensor Mode Control Temperatures

Thruster Enable/Disable Current (Voltage)

Isolation Valve Control Fault Signals

Wheel Speed

etc. Gimbal Angles

etc.

113

3.2.4 Fail Safe Design

The most catastrophic effects to the spacecraft, as caused by failures

in the control system, can occur only as a result of those failures that

affect the system actuators. Such failures must be prevented from

causing excessive spacecraft rates, or from depleting propellant

supplies or excessively draining the power system.

Fail safe is defined to be the property that is designed into the sys-

tem so that single failures, in any equipment of the system, will not

cause loss of the spacecraft.

It is assumed that faults in the sensors will be sensed by the processor

and the influence of these faults will not be allowed to improperly

affect the actuators. Similarly, many faults in the processor or the

actuators and their driving electronics may be similarly treated.

However, some processor faults and many faults in the actuators and

their electronics could cause the actuators to mis-function to the

detriment of the spacecraft. The prevention of these occurances is

the subject of this section. The prevention of, and action during and

following power faults will be covered in Section 3.2.5.

The two actuator types of principal concern are the thrusters and their

control electronics and the reaction wheels and their control elec-

tronics. These are the only two means by which momentum can be trans-

ferred into the spacecraft, causing the excessive and potentially

damaging rates. It was shown in Section 2.2.2 that hard-over failures

of greater than 3 to 10 seconds should be avoided.

In the following sections, the fail safe design implications on these

two critical actuator types will be considered.

3.2.4.1 Thruster Control

The mechanization design of the control system thruster drivers and
control logic is a special case because of the implications of failure
modes that could place the spacecraft in undesireable conditions of
attitude rates and the possible loss of thruster propellants.

114

The principal design criteria for the thruster control electronics are:

o No single point failure that can turn on a thruster con-

tinuously or repetively in such a manner as to cause high

attitude rates or significant loss of thruster propellant.

o Independent control of up to 16 thrusters.

o Provide both a pulse mode and continuous firing for each

thruster, independently. Pulse mode of 10 milliseconds

minimum to allow minimum limit cyclepropellant consumption.

o Redundant I/0 interface.

o Ability to utilize each thruster for any (possible) axis of

control in any mode.

It is hypothesized that the thrusters will contain dual drive coils

where either coil can operate the thruster. The degree of protection

against failure modes obviously affects circuit complexity and there-

fore must be evaluated against the cost in terms of part count, size,

weight and other design criteria. The following discusses several

configurations with different levels of thruster failure mode protection

and operational flexability.

Figure 3-27 shows a basic Valve Drive Electronics mechanization that

meets the specified design criteria.

Valve command data is inputed from the IOU in serial form via one of the
redundant data bus channels. For the case shown, the data appears as a
16 bit word in a particular holding register. The word format is as
follows:

Word A

Bit 0 - Al Pulse

Bit 1 - Al Continuous

Bit 2 + Al Pulse

Bit 3 + Al Costinuous

115

+28 V

CLOCK
BUS A ENABLE (2) DATA BUS ENABLE LOGIC ONESHOT ATE DRIVERS

DATA CROSS-

CLOCK T DATA I TO LOGIC
BUS ENABLE (2) SELECTOR POWER I EXCEPT

GATE COMMANDDATA O . . I TO POWER CIRCUITS

BUS SELECT 1 Ro0 1 2 3 15 +5V .

BILEVELS TO OTHER A B REDUNDANTVALVE DRIVERS COIL C VDE
THRUSTER
+Al

ONE SHOT

TO POWER
GATE

F-

TO
A B REDUNDANT
COIL COIL . VDE

-THRUSTER

-Al

TO OTHER
VALVE CIRCUITS

Figure 3-27 Valve Drive Electronics

Word A (cont'd)

Bit 14 - + A4 Pulse

Bit 15 - + A4 Continuous

Word B

Bit 0 - + A5 Pulse

Bit 1 - A5 Continuous

Bit 14 - + A8 Pulse

Bit 15 - + A8 Continuous

The processor can then command either a pulse "on" or continuous "on"

for each of the valves. To provide the fail safe feature of preventing

continuous on failures of a valve, a power gate is provided in the

28 volt power bus line. This power gate is turned on by a retriggerable

one shot that is in turn "fired" by the receipt of a valve command from

the processor. The time period of the power gate one-shot is adjusted

to be approximately 1.5 times the period of a complete major cycle of

the computer. If the computer does not recommand the continuous valve

"on" condition each cycle of the computation, the power gate one-shot

will expire and the valve will shut off. This mechanization essentially

protects against any single point failure in the valve drive electronics

causing a continuous "on" condition of a thruster. There are undoubtably
processor failure modes that can command "on" a valve continuously, how-

ever these must be and can be protected against by certain processor

software techniques as described in Section 3-5.

With the arrangement shown, logic is also provided to "off modulate" a

thruster pair to maintain attitude control about any given axis in the

event that both thrusters are turned on continuously, such as in the

case of performing a AV maneuver. For such a case, a pulse "on"

command to any given thruster will be logically directed to turn "off"

117

the thruster of opposite sign, thus generating the desired direction of

spacecraft attitude torque.

As pointed out previously, there are many levels of redundancy that can

be applied to the thruster control electronics. One other possible

arrangement is similar to Figure 3-27 except that each thruster pair would

have its own power gate and retriggerable one shot that is controlled

by a separate bilevel command input from the processor. This input can

be generated by a different software routine within the processor and

could be sent to the Valve Drive Electronics via a separate data bus.

Such a scheme would allow for many individual failures within the Valve

Drive Electronics without affecting the control and operation of the

balance of the thrusters. As in the previous case, the retriggerable

one-shot power gate prevents any single failure in the valve drivers,

power gate or data buses from causing a continuous valve "on" failure.

Another possible arrangement for thruster control is shown in Figure 3-28

In this case, the drivers are of a type similar to the National Semi-

conductor NHO008 power switch operating from a logic input and sourcing

load current from a 28 volt supply. The drivers are indicated as an

emitter follower transistor, driven by a logic gate.

The output of two or more of the drivers can be placed in series to pro-

vide redundancy protection against shorting of the driver or failures in

the input logic that results in a continuous "on" type command.

As shown in Figure 3-28, a series-parallel quad arrangement can be con-

figured where the A and B inputs are driven from continuous logic inputs

and the Ca and Cb inputs are driven by pulsed logic inputs. If the pro-

cessor has independent control of each input, it can pulse fire a thruster

by operation of B and Ca or A and Cb. Continuous operation is achieved

by operation of A and-B. As in the previous cases, to achieve a thruster

turn on, at least two valve drivers must be turned on simultaneously. No

single part failures or processor command can turn on a valve.

118

SCLOCK +Al
CLOCK --- DCONTROL +Al

BUS A ENABLE --- DATA BUS ENABLE LOGIC a
DATA 4 CROSS-

CLOCK - SELECTOR +Al
BUS B ENABLE-- +A cb

DATA b

ST ONE+

HOLDING HOLDING THRUSTER REDUNDANT

-LDAl
REGISTER REGISTER I 1VDA 10MS +Albp

A Al Ab Albp +28 V

HOLDING
REGISTER

RETRIGGERABLE RESETONE SHOT --- Al
-Al

-Alb
-Aleb

TO
THRIUSTER REDUNDANT
4-Al VDA

Figure 3-28 Valve Drive Electronics

Note that for this case there are two paths for the processor to achieve

the pulse mode of control. If any of the pulse drivers fail in the open

mode then the processer can control through the internally redundant path.

Also note that each redundant path is testable by proper programming of

the processor.

For the case of Figure 3-28 , the "off modulation" control of the thrusters

(not shown) can be done similarly to that of Figure' 3 -27. A retriggerable

one-shot is also provided to reset and disable all command outputs of the

holding registers if a new valve command is not received within 1-1/2

periods of a processor major cycle time. This will prevent a continuous

thruster "on" command in the event of a processor failure or data bus

failure after the valve has been commanded on in the continuous mode.

Note that it is important to place the A and B sections of the series

redundant valve drivers on different command holding registers so that no

single device failure can fail both sections on together.

As shown and discussed in the several examples, the key features of im-

plementing a fail safe valve driver is to provide a series redundant path

for driving the valve coil and then require that one path be continuously

updated by command from the processor to remain in the "on" condition.

Additional, similarly configured, parallel paths may then be added to pro-

vide more redundancy or alternate modes of operation (such as the pulse

mode). At least one additional parallel path to turn on the thruster

is required to provide the redundant control in the event of an open in

the series path. This is generally best provided by a completely re-

dundant standby Valve Drive Electronics operating into the redundant valve

coils. The series redundant paths should be completely separated within

the drive electronics from the drivers back to the retriggerable one - shot

to prevent continuous "on" type failures. Command implementation to the

Valve Drive electronics does not appear to be critical and can be handled

in a number of ways since the failure mode protection is applied "down-

stream". The "off modulation" control of the valves is logically simple

and does not significantly affect the design mechanization regarding pro-

tection against catastrophic failure modes.

120

3.2.4.2 Reaction Wheel Control

The mechanization of drive electronics for a spacecraft reaction wheel

has, like the thruster drive electronics, some special requirements over

that of most of the control system peripheral electronics.

Because the reaction wheel can store considerable energy, it potentially
can damage some other assembly or the spacecraft structure in such a

way that would represent a single-point failure mode. Most efficiently
designed reaction wheels are capable of overspeed type failures due to
certain failure modes in the drive electronics.

Generally speaking, most reaction wheels contain either a brushless d.c.
or 2 phase a.c. drive motor. The brushless d.c. motor is more efficient
than the a. c. motor but it requires considerably more complex drive
electronics which is particularly undesirable in the long-life missions.

Unless very large reaction wheels are required, the 2 phase a.c. drive
motor is the best choice.

Figure 3-29shows a typical mechanization of a reaction wheel drive
electronics using a 2 phase a. c. motor. In order to maintain the
status of spacecraft attitude and rates if there is an outage of the
processor, the reaction wheel control is mechanized as a speed control
loop that is commanded by the processor. (This also reduces the band-
width requirements on the processor.) If the processor fails to out-
put new data, the reaction wheel speed will hold the last previous
value, thus minimizing control torques applied to the vehicle.

The speed command data is received via one of the redundant data buses
and stored in a holding register. The command is in the form of a binary
word defining either the period between reaction wheel tachometer pulses
or reaction wheel-rate, depending on the mode of operation. If the wheel
is operated with a speed bias to impart momentum to the spacecraft, then
the more simple arrangement of counting clock pulses between tachometer

pulses will suffice.

121

DCLOCK
DATA DATA CONTROL BUS SWITCHING
BUS A ENABLE LOGIC FILTER REGULATOR

CROSS-
STRAP
SELECTOR COMMAND +28 V

DATA CLOCK DATA BUS PULSE WIDTH
BUS B DATA HOLDING MODULATOR

ENABLE REGISTER

BUS SELECTION

rv CONTROL SPEED D TO A LOOP ,CLOCK EOGIC ERROR CONVERTER COMPENSATION
REGISTER

SIGN
RWA TACH PULSE 2 PHASE PHASE A
TACH DETECTION DRIVE POWER

LOGIC CLOCK LOGIC AMPLIFIER
TO RWA
DRIVE
MOTOR

PHASE B MOTOR
POWER
AMPLIFIER

Figure 3- 29 Reaction Wheel Electronics

If the wheel is operated unbiased, where tt can go to zero speed, then

a rate command and sensing implementation must be employed. In either

event, the speed error is detected as the residual contents in a digital

register and converted to an analog voltage that can be appropriately

frequency-compensated to control loop stability. The compensated error

signal is then pulse-width modulated as the input to a conventional

switching regulator. Depending on system considerations involving loop

gain and bandwidth requirements, the compensation may not be required and

the D to A converter and compensation can be bypassed by operating the

digital speed error directly into a digitized pulse width modulator.

The output of the switching regulator is a variable amplitude d. c.

voltage that is supplied to the 2 phase a. c. power amplifiers driving

the reaction wheel motor windings. The power amplifiers are operated as

square wave switches to conserve power. The direction of motor torque is

controlled by reversing the phase of one of the motor drive outputs as

determined by the sign logic derived from the error register.

With a single polarity power supply, as in the case of a normal 28 volt

bus, the implementation of the drive electronics is greatly simplified

if center tapped windings are employed in the reaction wheel drive motor.

The power amplifiers are then transformerless, thus saving considerable

weight in the electronics at the expense of a slight weight increase in

the reaction wheel motor.

Another promising approach for single polarity supply and transformerless

a.c. drive is shown in Figure 3-30.

123

Vsup ly

3-Phase

Drive
clock --- Logic

Logic

sign

3-Phase Drive Motor

Figure 3-30

Three Phase Motor Drive

In this case the design of the 3-phase motor is more efficient than the

2-phase center tapped motor and requirements for transformers are still

eliminated. Two additional power transistors are required, but they can

be somewhat smaller in rating for the 2-phase driver.

Wheel speed run away is controlled by picking the number of poles and

operating frequency such that the synchronous speed of the motor is less

than the design limit of the wheel. The electronics must then be designed

to avoid any failure modes that could simultaneously increase the wheel

drive frequency and apply full torque. This is not a severe design con-

straint as these circuits are normally quite separate and independent.

Consideration must be given in the design of the power amplifiers to

handle the large reactive components of motor current.

124

Another important consideration in the design of reaction wheel drive

electronics is the design of the bus input filters and proper EMI pro-

tection. In cases where large motors are employed, the a.c. currents

generated by the switching regulator and square wave drivers can potenti-

ally cause a significant EMI problem. Where fast reconfiguration of a

fault-tolerant system is desired, the design of such filters must consider

transient characteristics as well as frequency attenuation. Some form

of active current limiting for start-up will undoubtably be required.

3.2.5 Power Interruption

Power interruptions can occur in the system,as caused by the control

system itself, by other systems, or by the power system. These interrupt-

ions can be brief (transient) glitches caused by EMI, switching transients

or "glitches" of one sort or another; or they may last a relatively long

time (several seconds, up to an indefinitely long time).

It has been assumed throughout this report that the power system supplies

not only the primary power (normally a nominal 28 v d.c.), but the second-

ary voltages required by the control system. This allows the use of

centralized power converters (and regulators) for the control, command,

telemetry, and other spacecraft electronic systems. These converters

must, of course, be redundant to provide the necessary reliability and

lack of a single point of failure.

The converters should be designed so that their redundancy switchover is

automatic and autonomous. This switchover normally occurs if any output

displays a lack of voltage or a greatly excessive current consumption.

The switchover should be fast enough that only a transient loss of voltages

will be experienced by the control system.

The control system blocks must be designed so that their faults tend to

open the power lines rather than short them (if there is any effect).

This is particularly important on the primary power lines where fusing

(or the equivalent) may be needed.

125

The primary power system of the spacecraft (particularly when using RTG's)

is very reliable and usually redundant. The power delivered should be

continuous. Note that this is not the case when using solar arrays, where

eclipses may occur or the array may be mis-pointed. Even so, transients

may still occur for a variety of reasons, including:

* Source switching

0 Load switching

* Redundancy switching

* EMI

e Fault clearing (Fusing)

These primary transients, if of sufficient amplitude/duration may pass

into the secondary power voltages. These voltages are also subject to the

same transient influences.

It is easy to see, therefore, how some or all of the voltages supplied to

the control system may exhibit transients. These transients should

normally be of hundred's of milliseconds or less duration, but may be

of plus or minus the voltages themselves in amplitude.

Since the circuits can not operate without voltage, the problems occurring

when the voltage(s) disappear must be examined. Note that long time volt-

age outages are extremely unlikely in a power system using redundant RTG's

and redundant autonomously-switched converters. None-the-less, the system

should be designed for restart following such an occurance. This, then,

will also cover start-up upon initial power turn-on.

If the transient is short enough, then the capacitance of the power

filters will maintain the voltages high enough to allow the circuits to

continue working. Beyond this, where circuits may be upset, protection

of one sort or another must be provided.

126

This protection must be for the actuator-type peripherals and for the

processor. All other peripherals are assumed to be designed so that

they are not harmed by the transients and, at worst, simply provide false

outputs.

The actuators of concern are the thrusters and the reaction wheels. The

thruster drive circuitry should be designed so that in the absence of

any combination of voltages the thrusters do not fire (unless they should

have been). The registers receiving the firing commands from the IOU

should also be configured so as to greatly reduce the possibility of

thruster firings (beyond a short pulse) when the voltages come on again

and the latches, flip-flops, etc. assume presumably arbitrary states.

The processor should soon correct any improper states, in any case.

The reaction wheel drive circuitry should be designed so that in the

absence of any combination of voltages the wheel will not overspeed

(or the drivers will not supply d.c. to an a.c. motor). The processor

will quickly correct'any bad speed commands resulting from powbr turn on.

In the processor, we must hypothesize a power glitch detector which

responds to detect loss of voltages slightly faster than the decay on

the load side of the filter capacitors. It should detect voltage re-

sumption slightly slower than the rise on the load side of the

capacitors. This detector can be used for a variety of functions in the

processor. Examples are:

o Clock stoppage. When a glitch occurs, the clocks should be

immediately stopped, which will prevent fault propagation.

Following the glitch, a slight delay before clock restart

should occur. The clock oscillator must be self-starting

at the correct frequency and the phase dividers must start

in the proper sequence.

127

Prevention of erroneous write. When a glitch occurs, a

memory write in process should be completed (easy if done

in parallel) and further writes should be inhibited. This

can be done if the memories have a slightly longer voltage

retention (or are non-volatile) and the clock is stopped.

* BITE generation. This can provide a power interrupt signal

(when the voltages resume), causing program roll-back, start-

up, etc.

As noted elsewhere, non-volatile memories are very desireable, at least

for short power outages. It is also advantageous if the redundancy

status and mode status are non-volatile. Then, upon the restart

signal, the processor can clear itself of the effects of the glitch

and bootstrap itself back into operation without delays for reconfig-

uration or finding the right mode, etc. The transients will then have

a minimal effect on-the system operation.

Start-up upon power turn-on or resumption should cause the program to

restart at the beginning of the executive. This software should be

configured to not let the peripherals do "bad" things, while destroyed

memory information is restored, proper configurations are established,

and the normal operation is entered.

128

3.3 Hardware/Software Requirements

Characterization and allocation of requirements to control system hardware

and software elements is key to the design process which translates the

"system-design" into physical reality. Although the control system design

has been developed only to a preliminary functional level (i.e. primarily

quantitative as opposed to qualitative characteristics), important hardware/

software requirements may be extracted and supported on the basis of prior

design experience. This section treats the processor/electronics functional

requirements, with emphasis on the processor - I/O as determined by a more

explicit consideration of software and interfacing data flow.

3.3.1 Processor/Electronics Functional Requirements

This section provides for characterization of functions required to im-

plement system-level design as allocations to modular hardware elements.

The hardware is divided into three groups, namely: processor - including

ACU, memories, I/0 interface, and special I/0 electronics; auxiliary -

controller-related special purpose electronics (e.g. backup electronics);

and peripheral (e.g. sensors, actuators) (with associated electronics).

Processor - I/0 functional requirements are divided into a number of areas,

each of which is enumerated and treated separately.

Data Processing - the processor - I/0 electronics is to perform all subsystem

data processing. This data processing is characterized by the software

functions which are to be performed. These are treated in some detail in

the next section. However, it is reasonable to characterize these soft-

ware functions within the following context:

o Modular design with well defined inptts, processing, outputs

o Straight-forward, generally simple algorithms/data handling

o Some matrix operations, some logical operations

o Minimal data manipulation

o Minimum instruction set is adequate, i.e., no need for floating point,

bit/byte manipulation, etc.

Speed - the processor speed should be such that the application software

utilizes less than a 50% duty cycle. This leaves considerable time for

program growth and executive and fault-tolerant related operations (e.g.

retry of faulted tasks, etc.) A moderate processor speed (on the order

129

of 100-150 kops appears appropriate.

Accuracy - the processor word length (single or double-precision as ap-

propriate) must be such that control system performance errors attributable

to computation are negligible. Accuracy to fractions of a degree are

reasonably achieved with 16 bits; accuracy to the sec-level requires the

equivalent of 24 bits.

Memory - the processor memory size should be configured such that a 100%

growth of the application programs and related data storage/scratchpad may

be accommodated. In general, a relatively small processor memory will be

required. Program memory of 4-8K and scratchpad of 1-2K appears generous

for almost any application. Since memory size may directly affect relia-

bility, it is important to have memory available in small increments

(e.g. 1 or 2K for program, 256-512 word for scratchpad) in order to pro-

vide an optimum configuration. If Read-Only-Memory (ROM) is used for

program storage, it is essential that the read-write (scratch) Random Ac-

cess Memory (RAM) be capable of storing/executive program modifications

(e.g. post-launch).

Input-Output - The processor - I/0 must provide the interfacing of all

data/signals to be acted upon by the software. This includes data inter-

face from the auxiliary electronics, peripherals, telemetry and command,

and other spacecraft systems. The data is in the form of serial digital,

analog (input with A/D conversion to 12 bits), bi-levels, and command and

telemetry data which must be asynchronously buffered.

Auxiliary Electronics functional requirements are most easily definable

as related to specific controller-related functions. Modularity of these

individual functions, within the redundancy approach for optimization,

must be considered separately. The following is representative, based on

the control-system design developed in the previous sections (see also

Peripheral Electronics as relates to self-test electronics and interfaces).

Backup Electronics - Provide electronics for system malfunction indication

and electronics to implement control laws using the sun sensor data to

establish and maintain a coarse pointing of a defined spacecraft axis

toward the sun.

130

Reaction Wheel Electronics - Provide electronics for reaction wheel drive

and wheel speed (tachometer) readout processing. The electronics must

accept serial digital data input from the processor - I/0. Digital out-

put data is preferrable.

Valve Drive Electronics - provide electronics for valve enable, valve

drivers, isolation valve enable/switching, heaters (if required), and

implementation of fail-safe operation. The electronics should be designed

to accept serial digital data input from the processor - I/0. Digital

output data is preferrable (if required).

Jet Vane Electronics - provide electronics for jet vane servo in response

to angle commands, vane actuator drive electronics, and angle readout

processing. Digital input/output interface is as above.

Scan Platform Electronics - provide electronics for scan platform gimbal

servo, actuator drive, and angle readout processing. (I/0 guidelines

same as previous,.)

The distinction between peripherals and auxiliary is not a particularly

strong one. However, in the present context the peripherals include

primarily the sensors and actuators themselves. The key functional

requirements on peripherals apply also to the auxiliary electronics,

namely:

o Digital data interface is preferable

o Peripheral interfaces should be buffered, non-synchronous, and
"ready"

o Peripheral performance monitoring requires only primary (applications)

data. Some built-in-test (self-test) in the form of logic output may
be useful but is not required.

3.3.2 Software Computational Requirements

The control system software is used to process sensor data, develop

attitude error, compute control laws, and exercise control authority.

The software is organized in terms of individual modules defined to handle
specific functional requirements. The actual linking of these modules is

under control of the executive software. The software functions were ident-

ified earlier in Figure 3-26. The software module design has been carried

131

to the level of preliminary equation definition and flow, and preliminary

generic coding of the software was conducted to determine computational

requirements.

An example software module design for the gyro processing module is in-

cluded to summarize the requirements development process. The overall

computational requirements for the control system software are summarized

in Table 3-6 . A total program memory of 4K and scratchpad of 1K provides

for almost 100% growth, and an average short instruction speed of 8 Psec

provides for less than 50% duty cycle for the identical applications pro-

grams. The sizing requirements of Table 3-6 are properly conservative and,

in some cases, significantly constraining (e.g. control sample period of

100 ms, double precision processing for IRU) such that much computational

margin would be anticipated.

132

TABLE 3-6

COMPUTATIONAL REQUIREMENTS (TYPICAL - BOUNDED)

APPLICATION MODULE PROGRAM DATA/SCRATCH INST/PASS ITERATION/SEC (MAX) KOPS (MAX)

Initialization/Mode Logic 250 50 120 10 1.2

Sun Sensor Processing 20 6 50 10 0.5

Star Sensor Processing 150 30 450 10 4.5

IRU Processing* 510 146 3200 10 32.0

IRU Update 200 50 1700 1/30 0.1

Attitude Error Processing 115 31 1200 10 12.0

Control Laws 200 40 500 10 5.0

Momentum Desaturation 80 26 380 1 0.4

Wheel Distribution 50 16 230 10 2.3

Thruster Select 20 8 70 10 0.7

Scan Platform Control 40 10 100 10 1.0

CMD Processing 20 -- 30 10 0.3

TLM Processing 100 10 400 10 4.0

System Test 200 30 --

Utility 300 --

TOTALS
64

2255 452

*Performed in double precision

DESIGN EXAMPLE

IRU Reference Module

Functional Requirements

This software module provides the functions associated with maintaining an

inertial attitude reference in conjunction with a configuration of strap-

down rate integrating gyros. The gyro outputs are processed to compensate

for known misalignments, scale factor uncertainties and bias. Rate and

attitude of a known reference frame, nominally fixed with respect to the

gyro configuration, is derived with respect to a known inertial
reference

frame, e.g., Earth-Centered-Inertial (ECI). Updates to the attitude and

gyro compensation, periodically available from an external source, are

incorporated as available.

Computational Functions

The computational functions are summarized as follows:

* Process gyro output data and provide transformation to defined

orthogonal spacecraft reference frame.

* Compensate for gyro error sources (e.g., drift bias, input axis align-

ment, and scale factor)

* Maintain precise angular rate reference

e Maintain precise short-term inertial attitude reference

* Compute elements of direction cosine matrix relating reference frame

attitude to ECI.

Operating Modes

There are two basic operating modes for operation of the gyro reference

software. They are:

* Free. The gyro outputs are periodically processed to maintain current

attitude and rate reference.

* Align. This mode is used for initializing and/or updating the attitude

and/or gyro compensation from an external source.

134

Input/Output

o Input. The inputs which may be utilized by the gyro reference soft-

ware are summarized.

Gyro Data: Each gyro output is a digital word whose scaled value

represents the incremental angular rotation measured about the gyro

input axis.

Mode Flag: A mode flag indicating when update information is available.

Gyro Parameters: Input axis alignment, scale factor, and bias.

Attitude Update: Attitude variables provided for update.

o Output. The outputs to be provided by the gyro reference software are

summarized.

Kinematic Parameters: The kinematic parameters are available for use

in other software functions

Rate: Angular rate components in spacecraft.axes.

Direction Cosine Matrix: The direction cosine matrix relating space-

craft reference axes to ECI reference axes.

Functional Description

The output of each of Ng gyros is scaled to yield the measured rate, and

the resultant rate vector is transformed to a known fixed orthogonal refer-

ence frame. The "geometry matrix" used for the transformation incorporates

terms which account for "known" individual gyro input axis alignment and

scale factor. The gyro bias compensation is added to complete the rate

estimate. The equation for estimated rate takes the form

W = G w -b

where

A = estimate of rate in fixed coordinate frame, 3 x 1

w = measured rate alon.g each of N gyro input axes, N x 1
g g

b = gyro bias compensation, 3 x 1

G = "geometry matrix", 3 x Ng (determined through preflight measurement

and/or flight calibration).

135

Euler Symmetric Parameters are employed as the kinematic variables for com-

putation of vehicle attitude. This choice, as opposed to selection of

direction cosines, was based upon the fact that a four, rather than nine,

parameter system of equations is involved; and also, the periodic re-

normalization that must be performed to combat computer roundoff error is

much simpler. As is well known,

P T2 P

where

0 w3 "2 W1

n -3 0 wl 'w2

SW2 -W1 0 W3

X W-1 W2 -U3 0

Selecting the integration 'period sufficiently small, 2 can be assumed

constant over the integration interval, AT, and

Pk+l = exp (,k AT/2) pk

where ok represents the constant matrix assumed on the interval [tk'tk+l].

It is possible to obtain a simple closed form expression for exp (SkAT/2)

which tends to inhibit the truncation error that would normally exist in

the power series representation of the exponential. This is given by

exp (AT/2) =(cos bAT) I + sin bAT2b

lb

b 2 (2)2

The kinematic variables are used to derive the direction cosine matrix

which relates the spacecraft axes to ECI. The matrix A has the form

136

P1 - P2 - P3 + P4 2(P 2+P 3 P4 (P3pz4

A= 2(piP 2-P3P4) -Pi z+ 2 -p3 z Z(PZP 3+p p4)

2 2 2
2(piP 3+ 2 4) 2(p PP4) -Pi - 2 + 3

+ P4

= [aij..]; i, j = 1,2,3

Design Requirements

Method and Flow

The algorithms and flow chart are shown in Figure 3-31.

Computation Requirements (Double Precision)

Storage Memory (Including Data Base)

Program Scratch

Gyro Processing 47 24

Attitude Algorithm 201 82

Direction Cosine Matrix 262 40

TOTAL 510 146

Execution (operations, including subroutines)

Gyro Processing 535A + 36 M + 3D

Attitude Algorithm 1334A + 117M + 11D

Direction Cosine Matrix 232A + 30 M

Subroutine Usage (10A/Subroutine call included above)

Gyro Processing 1 Matrix-vector mult. [3xN] [N xl]

Attitude Algorithm 1 sin/cos

2 square root

1 Matrix-vector mult. [4x4] [4x1]

Direction Cosine Matrix

Data Base Geometry Matrix [3xN]

Usage

Figure 3-32 indicates the effects of roundoff error due to computer word

length on computational accuracy. The resultant attitude error standard

137

Input and Scale 1i K Ni
Raw Gyro Data:m M

Compensate for Alignment,
Scale Factor, and Bias: = G - g

o = T (e i2 ei = i T

Rin(e /2)
So = C = cos(eo/2)

Co e3 So -e2 So 1 So

-e3 So Co e1 S e02 So

Form Transition Matrix: RK e2 S0 -el S0 Co e3 So

-e I S e S -e 3 So C

A R
Propagate and Normalize Pk+l Rk Pk
Attitude Parameters: =

p -p 2 +p42 2(plp2 +P3P 4) 2(pp 3 -p2 p 4)

Compute Direction 2 2 2 2
Cosine Matrix: A 2(plP2-P3P 4) - 1 + 2 -p3 p42 2(P2P31+PP4)

2 2 22
2(pp 3+p2P4) 2(p 2P3-P 1l 4) -P1 -P 2 +P3 +P4 J

Figure 3.-31. IRU Reference Flow Diagram

138

10

iL Tt + - T- i7 - -

- i -i~ ~ : ... :i: L .i, --

. -. .. - .4-- -- ----

-3-

()~ ~~~ _ --_ ---: --- : ----
7 - . 7 . . i ...

1 0 ..8 . :.

- " -- ... - - i ... -- -I_ I

Computer Wodeghi ts inIcu e

a q9

.... ~_ _. : .. .

. . , ',I

i0- ' _ _ - - - ...-- T---T -. .i-

T .. . I-- ---- ... - + -- -- f!-....-:. -

... :-r -_-- :--i -7:: -r- --:: ! ---:--

7 7

-7

..... ~ --- ---:- ' , _ . .-'- - - "

.... L- l -. - -- t ._$-- ..__-----

i It

.ii~ -:.: : - :.. .i .-J 1 •
............~ ~ ~ ~~~~~~~~~- -..:--- .. -- '

0-3,

16 18 20 22246283

.Computer Wlordlength (Bits, Sign Inclusive)

Figue 3-32 Roundoff Eror Effects

T'~1

deviation, a is a function of the number of iterations, N, over the time

period for which the error must be bounded. Figure 3-33 indicates the

computational error from drift effects due to commutation errors as a

function of rates and accelerations. The results of this (or similar data

for mission-related values of rate/acceleration) provide direction for

selection of the iteration period.

3.3.3 Input/Output Requirements

The control system I/O requirements have been assessed through considera-

tion of the use of multiple and redundant sensors and actuators. The re-

quirements are listed in Table 3-7, where moderate analog, serial digital,

and bi-level data interfaces are identified as well as telemetry and

command.

This data is summarized for the I/O requirements (of an IOU) in Table 3-8.

This tends to be the maximum requirement for an IOU for an interplanetary

mission such as was postulated.

140

1.0

Drift Error w 0.06 Deg/sec (All Curves)

(sec/minute. " a = 2x10-3 rad/sec
2

0.6

=10-3

0.4

0.2
=5x10-4

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Sampling Period (seconds)

Figure 3-33 Computation Error Effects

141

Table 3-7

Input/Output Requirements From/To Peripherals

(Relative to IOU)-

No. of Inputs No. of Outputs

Peripheral Signal Name
ame at Peripheral) Bilevel (bits) Analog Serial Words Bilevel (bits) Serial Word

ide Angle Sun Sensor (4) Pitch Output 4

Yaw Output 4

Temperature 2*

Fine Sun Sensor (2) Pitch Output 2

Yaw Output 2

Temperature 2*

Star Sensor (2) Yaw Output 2

Roll Output 2

Magnitude Output 2

Threshold Input 2

Mode Input 4

Temperature 2*

Inertial Reference Unit (1) Gyro-A Output 1 1
(R&P)

Gyro-B Output 1 1
(R&P)

Gyro-C Output 1 1
(R&P)

Gyro D Output 1 1
(R&P)

Table 3-7

Input/Output Requirements From/To Peripherals

(Relative to IOU) (Continued)

Peripheral Signal Name No. of Inputs Nooof Outputs

Name (at Peripheral) Bilevel (bits) Analog .Serial Words Bilevel bits) Serial Words

Inertial Reference Unit (1) Gyro-E Output 1 1

(Continued) (R&P)

Gyro F Output 1 1

(R&P)

Accel-A Output 1

Accel-B Output 1

Mode Input

Torque Test Input

BITE 6 2*

' Reaction Wheels&Elect (4) Speed Command In- 4
put

Wheel Speed Outpu

Mode Input 4

Temperature 6*

Wheel Voltage/Current 12*

hruster & Elect.(2) Command Inputs 4

Mode Inputs 4

Actuators & Elect. (8) Position Inputs 8

(TVC & Scan Platform) Position Outputs 8

Mode Inputs 8

Temperature 8*

Table 3-7

Input/Output Requirements From/To Peripherals

(Relative to IOU) (Continued)

-No. of Inputs No. of Outputs

Peripheral at Peripheral) Bilevel (bits) Analog Serial Words Bilevel (bits) Serial Words

Back-up Electronics (1) Mode Status 2

Power Switching Elect. (2) Power Control 2

TOTALS 8 14 + 34* 34 20 18

* Slow speed analog data for telemetry (temperatures, etc.) should probably not go through the processor, but

should interface directly with the telemetry subsystem.

Table 3-8

Summary I/0 Requirements

Data Type Input utput

Analog (12 bit A/D) 14

Serial Digital (Word Gate Bilevels) 34 18

Bilevels 8 20

Command
Single 32-bit Buffer

Tel emetry
Dual 256-bit Buffer

NOTE: Analog slow speed data (marked * in Table 3-7) not included.

3.4 Processor Design

The hardware design considerations of the processor are provided in this

section. Given the requirements of Section 3.3, what are the tradeoffs

of accuracy, speed, power, architecture, etc. that provides an optimum

processor design? Note that these tradeoffs are strongly influenced

by following sections (3.5, 3.6 and 3.7) with frequent anticipatory

references to them.

The subjects of the following sections on processor design are:

* Arithmetic

* Instructions

* Interrupts

* Timing

* External Communications

* Internal Communications

* Memory

* Technology

* Architecture

* Micro-Programming

Since the COPE processor will be used as a baseline, considerable ref-

erence will be made to its design features (and to Appendix A).

The recommended design will be developed, subject-by-subject in t;lis

section, but will be completely summarized in Section 4.0. That design

will be seen to have several differences from the existing COPE.

3.4.1 Arithmetic

The arithmetic section of the processor is normally centralized into an

arithmetic unit or an arithmetic and control unit (ACU) as in COPE. The

organization of this arithmetic unit is determined by the computational

requirements (see Section 3.3.2). The requirements for a spacecraft

control processor were seen to be quite modest in terms of both accuracy

and speed.

146

There are available MSI logic chips which contain 4-bit byte arithmetic

and logic capability (Fairchild 93L40, for example) in
a low-power de-

sign. Since these parts are more economical (in part count
and power)

than serial arithmetic, the use of serial arithmetic is not advisable,

due to its lower speed as well.

The speed will be proportional to the number of bits processed at a time,

and therefore, to the total word length. A fully parallel arithmetic

organization will be the fastest, but as the degree of parallel operation

increases, the part count and attendant cost, weight, and
power penalties

also i ncrease.

The accuracy is directly proportional to the number of bits per word.

As the word size increases, the accuracy increases, but the part count

and allied penalties also increase. Double-precision arithmetic

can provide an accuracy/speed trade-off also. Double-precision doubles

the accuracy while halving the speed, with but a very slight
increase in

parts.

Since it is usually desireable to have the data word length the same
as

the instruction word length, and since there are usually minimum
limits

on practical instruction word length to allow coding of the operating

instructions and addresses, 16 bit words are a practical lower limit for

instructions without error detecting coding. As the instruction word

length grows, it is much easier to incorporate the operation coding
and

greater direct addressing capability. This can serve to influence the

data word length.

If error detecting coding is used, this also will lengthen the words. As

will be seen in Section 3.6.1, this coding would most likely add one 4-bit

byte per word.

For attitude conttol processors parallel arithmetic is probably not needed

in any application, and is uneconomical. Serial arithmetic is no more

economical than byte-serial arithmetic with a 4-bit byte. Byte serial

arithmetic seems to be indicated, whatever the word length.

As new LSI parts become available (such as an 8-bit arithmetic chip) then

perhaps a longer byte length would be better. Note, however, that the

147

pin numbers go up by 3 times the number of added bits, so that chips be-

yond 8-bits wide are unlikely (a more likely approach is the use of LSI

microprocessor chips, discussed in Section 3.8).

The accuracy and speed requirements developed in Sections 3.3.2 and 3.3.4

indicate that a 16-bit word organized in 4-bit bytes is adequate if the

operational speed is greater than 100 kops (thousands of operations per

second) and if double precision capability is included for the inertial

reference computations (which then take a large part of the time avail-

able (see Table 3-6). That is, for this application, the number (and

speed of) double precision operations is the most severe restriction of

the processor speed (time availability).

It should be noted that, for a given technology of circuits used, that

the speed is inversely proportional to the word length. As the word

length (and accuracy) increase, the speed decreases. However, for this

application, at 24 bits word length, the need for double precision

operations almost disappears, relieving the operating speed requirements,

and making this alternative also attractive. The choice is a 16 bit

word length, using considerable double precision operations, with a

short instruction speed S, and an X% cycle utilization; compared to a

24 bit word length, using little double precision operations, with a

short instruction speed 1.5S, and an O.8X % cycle utilization.

In any case, the COPE processor used 16-bit word length and this still

appears to be acceptable.

The penalties for word length increaseare clearly not all in the

arithmetic, but generally affect the entire processor. Based on a study

made, using COPE as the baseline, the complete processor penalties as

the word length increases, are shown in Table 3-9.

148

TABLE 3-9

PROCESSOR PART COUNT PENALTIES FOR INCREASING WORD LENGTH

Word Length (bits) Part Count Penalty (normalized to 16-bit)

16 1.00

20 1.05

24 1.11

28 1.15

As can be seen, the penalties of increased word length are actually quite

low. Note that power, weight and cost are approximately proportional to

part count. The conclusion is still the same, however, that the COPE

word size and arithmetic organization are adequate for the job and since

minimal adequacy is the measure of optimization used, this 16-bit word

size and 4-bit byte arithmetic organization, is the choice recommended.

Another consideration of the arithmetic is the need for floating point

vs. fixed point arithmetic. The only advantage of floating point is a

slight advantage in programming ease. Its disadvantage is a hardware

penalty. This hardware penalty is caused by the greater word length

required.

It was decided to use fixed-point fractional two's complement arithmetic

for COPE and this still seems appropriate as a recommendation. The

words are organized with the most significant bit the sign bit and sub-

sequent bits ranging from 2-1 down to 2
-15 (2-31 for double precision).

3.4.2 Instructions

The subject of instructions encompasses not only the choice of the in-

struction set, but how they are encoded to limit the size of the in-

struction word.

The choosing of an instruction set is a series of tradeoffs (battles?)

between the software and hardware designers. Any instruction added will

149

simplify the programming to some degree, but it will also add parts, cost,

power, etc. to some degree. It is a virtual impossibility to arrive at a

set that is truly optimum. Some relative optimum can be achieved, how-

ever, which is a compromise which apparently yields equal happiness for

both disciplines.

Certainly, there is a minimum set of instructions necessary. One must

be able to add, subtract, and input and output data between memories,

ACU and IOU (& RCU). Control system requirements also indicate a need

for logical operations, double precision add and subtract, and multi-

plication and division.

The instructions can be limited by the instruction word length, also.

For 16-bit words or less, the word length is a restriction on numbers of

instructions and on the direct addressing capability.

Typically, each instruction word is organized into two parts. One part

is termed the operation, operation code, or op. code. The second part is

the address and may refer to memory, IOU or other address.

The number of bits available for the address portion (field) determines

the number of direct address word locations that can be provided. Often

this address field is much less than the number of address word locations

which are desired. For example, if the address field is 8 bits long,

this provides direct address to only 256 words, which are much less than

the total number of memory words available or desired.

To enable addressing of the total memory words desired (at least > 8 K

words), some means of non-direct addressing is required. This can be

done by including a data base register in the ACU that determines the

sector of the total memory that the address field specifies. The data

base register contents-are appended (as the MSB's) to the address field,

defining the total address, which can be as long as desired. The operand

coding can determine whether this appending is done or not, as desired.

An instruction is needed to load the data base register.

150

It is convenient to have indexing as an option determined by the op. code.

When indexing is specified the contents of the index register are added

to the LSB's of the address field. This new address is the one used

(effective address). The index register should be the same length as the

address field. Not all instructions necessarily need to be indexable.

The ACU must also contain a program counter, which is incremented by one,

for each instruction, by most (but not all) instructions. The program

counter is loaded from the effective address by an indirect jump in-

struction. A jump relative instruction is also convenient. This adds

its "address field" portion to the program counter., Indirect addressing

can also be included which treats the word addressed in the instruction

as a new address (which has no op. code, and thus the entire word is

available as an address) which is entered into the program counter. The

program counter must be as long as the address field plus the data base

register. The memory addressing takes place from the program counter.

If multiply, divide and/or double precision operations are needed, then

the ACU must be designed with two operating registers as a minimum.

These are usually referred to as the A-register (accumulator) and the

Q-register (quotient). They are the work horse registers of the ACU,

being used for temporary storage, inputting and outputting between the

memories, IOU, arithmetic portion, etc. It must be possible to load into

or empty out of (store) the A and Q registers from/to the memory-contained

/containing operands.

The index register must also have load/store capability. There are

therefore 6 instructions needed for register operations. They are:

o LDA - Load A-register

o STA - Store A-register

o LDQ - Load Q-register

o STQ - Store Q- register

o LDX - Load X (index) - register

o STX - Store X -register

151

A store operation does not disturb the register contents. The first

four instructions should be indexable.

A certain number of arithmetic instructions are needed. All should be

indexable. They are:

* ADD - Add to A-register

* SUB - Subtract from A-register

* ADQ - Add to Q-register

* SUQ - Subtract from Q-register

In each case the operand (or its two's complement for subtraction) is

added to the contents of the specified register and the result is placed

back in the same register.

For a multiply (MPY) the contents of the A register are multiplied.

(using a suitable algorithm) by the operand and the results (which are

double length) are placed in the A&Q registers.

For a divide (DVD) the double length contents of the A&Q registers are

divided (again using a suitable algorithm) by the operand and the results

are placed back in the A register. (With the Q register zeroed). Care

must be taken to properly handle overflows of division.

Complement (CMP) instructions, performing a two's complement of the A-

register contents, can also be easily provided (since it is already a

part of the subtract operations) if desired.

It is often useful to also provide a limited number of logical instructions

such as AND (logical product), OR (logical sum), and exclusive OR. These

are not absolutely needed, however.

Because of the use of fixed point arithmetic, a number of shift

instructions are needed. These can shift left or right and may operate

only on the A-register or on the A and Q registers in series (for double-

length words). The shifts may be designed so that over-or-under-flow bits

are lost, or so that a cyclic shift occurs (where the LSB shifts to MSB,

152

or vice versa). The number of bits of the shift usually occupy part of

the op. code or address field of this type of instruction.

Double precision operations can either be handled by the use of in-

structions unique to them or by particular juxtaposition of conventional

instructions (such as ADQ and ADD, for example).

It may also be desireable to provide subroutine linkage instructions to

permit direct loading or storing of the program counter. Instructions can

also be provided for testing (usually for zero) the index register,

program counter, or other register. These instructions are usually

program conveniences and are not essential.

Another class of instructions is, needed for input/output (I/O)

operations. They are used to implement various operations in the IOU

and to interface data between IOU and ACU. For I/O instructions, the

address field refers to the I/O address. This may still be indexed

analogously to the memory indexing.

These instructions usually include the capability to test (determine

if it is a 1 or a 0) any IOU input or internal IOU indicator bilevel;

to set or reset IOU bilevel outputs or internal IOU bilevels; and to

shift data in either direction between the IOU register(s) and the ACU

register(s). Usually these instructions can contain both a test and an

action capability. If the test results in a 0, the next instruction

is executed. If the test results in a 1, the setting, resetting, or

shift is accomplished. The shifts can be of standard length or

programmable. The shifts might be byte-serial or serial. One might also

have more instructions to permit direct IOU/memory data interface.

Some other miscellaneous instructions may be needed because of the fault

tolerance requirements. They can include delay or advance instructions

and instructions involving data exchange between the ACU and RCU (or

equivalent.)

153

In the COPE processor, a total of 38 basic instructions were used. See

Appendix A for a complete listing of these instructions, their coding and

use, and the specific multiply and divide algorithms used.

Note that with indexing and sectoring optional, the total instructions

are much greater than the basic number. This total can be limited only

by the ingenuity of the coding.

A basic instruction set of 35 to 40 instructions should be adequate for

control system use. Note that this takes a minimum of 6 bits for the

op. codes, without considering bits for indexing, sectoring, memory type

specification, etc. Such additional features can quickly use up another

2-4 bits of op. code. We, therefore, see that a 16-bit instruction

word minimum is indicated to provide the minimum 8-bit op. code and 8-bit

address field.

A longer instruction word can permit simpler and better coding of the

op. code; redundant or error-detecting coding of the op. code; a larger

direct address field; error detecting coding of the address field; or

combinations of these. Note the penalties of Table 3-9 in this, however.

Special, limited-use, instructions (and the resulting algorithms) for

other operations can also be included, much as in a scientific calculator.

Functions such as eX,ln x, xy , trigonometric functions, etc. could be

included. Generally speaking, such functions only simplify programming

and always at the expense of hardware. Possibly in a micro-programmed

LSI processor (see Section 3.8.4) the addition of such functions would

be more practical. Again, hardware that is not included can not add

weight, power, cost or failures.

3.4.3 Interrupts

Interrupts are typically used in asynchronous data processing systems

for servicing priority demands. Interrupt generation and processing can

be done by either hardware or software or both.

154

In an attitude control system including fault tolerance features,

interrupt requirements are determined by operational and failure-handling

requisites. Operational interrupts are necessary when rapid responses to

priority demands are required without significantly increasing the pro-

cessor burden. Otherwise, these demands can be serviced by

periodically sampling the corresponding peripherals with the required

frequency under program control. Since high bandwidth operations are

performed by peripheral special-purpose electronics in order to make

the system less sensitive to processor faults, sampling frequencies are

relatively low (typically in the 0.5 to 5 Hz range). System reaction

times of the order of 0.5 to 1 sec are adequate for most eventualities.

Consequently, peripheral sampling can be used for all ACS functions without

performance degradation or appreciable duty cycle penalty. Power in-

terruptions can be handled without reinitializing interrupts if mode,

status and rollback data are preserved through the transients. The

processor should be designed to recover from failures caused by power

interruptions without unnecessary reconfigurations.

Interrupts of various kinds may be used for recovery purposes. Un-

conditional interrupts are preferred to minimize the proliferation of

failure modes. Two types of interrupts that have been found to perform

very powerful recovery functions are the following:

o Cycle Timing Interrupt (CTI)

This occurs at regular intervals (e.g.: every minor or major

cycle) and causes a reset of the ACU program counter (to start

processing executive instructions). The main functions of this

interrupt are 1) to get the processor out of any hangups or loops and

2) to initiate a bootstrapping recovery process controlled by the

executive program and monitored by the RCU and HCU.

o Fault Interrupt (FI)

This is initiated by either software or hardware fault signals

each time initiation of the bootstrapping recovery process is re-

quired. This interrupt can be used in addition to the CTI for

speeding up the recovery process.

155

The recommended recovery approach (see Section 3.5.5) uses CTI's only be-

cause of the following reasons:

* Recovery time requirements can be met easily

* Additional complexity and operational risk of FI's is not warranted.

* Exclusive use of CTI's provides a more orderly and predictable

program execution, thus enhancing operational reliability.

All of the preceding discussion assumes the use of a synchronous

executive program, as discussed in Section 3.5.

Note that interrupts are not needed for peripheral, command or telemetry

interfacing if data buffering is included in the sending peripherals,
or in the IOU (for commands and telemetry).

The use of interrrupts in control system processors seems to be
traditional, and based on the "we've always done it that way" approach of
general-purpose computers or aircraft computers (where it is needed and
makes sense), rather than an examination of actual need. It is particu-
larly undesireable as a feature of a fault-tolerant design.

3.4.4 Timing

Timers or timing functions are required within the processor for the
following functions:

* Master Clock

A mult-phase (usually four) master clock is required in the pro-
cessor or somewhere in the system to provide the overall clocking
of the processor data. The frequency is usually high (500KH

z
to 1.5 MH Z) and is derived from a crystal oscillator. Further
discussion of this clock and its redundancy problems, is pro-
vided in Section 3.6.3

156

0 Program Cycle Timing

Assuming the synchronous, fault-tolera
nt structure of the pro-

gram, as developed in Section 3.5, then minor or major program

cycle durations are determined by cycle timing synchronization

signals derived from the master clock output by means of binary

count down logic. Provisions should be made to allow hard-wired

adjustments of this CTI frequency, prior to launch, within
the

range from 3 to about 50 Hzo

o Status Cheek Window

Within a specified time interval after each CTI, the RCU should

receive a correctly-coded status word from the ACU. If either

no word or an incorrect word are received within the status check

window, the RCU initiates reconfiguration of the primary pro-

cessor units (ACU, ROM, DBS). (See Section 3.7). Status check

window signals are generated by an adjustable one-shot
multi-

vibrator in the RCU's which is triggered by the CTI's.

o HCU Reconfiguration Monitoring

The HCU supervises RCU reconfiguration functions by means of an

adjustable one-shot multi-vibrator which is triggered each time
a

correct status word is transferred from the ACU to the RCU. If

a correct word is not received within the HCU timer period, an,

RCU reconfiguration is initiated. This period is equal to the

longest possible reconfiguration time, plus the program cycle

time.

o Discrete Event Timing

Timing functions exceeding the duration of the CTI period can be

handled by the software with a quantization equal to the CTI

period. If finer resolutions are required an optional real-time

counter can be included in the processor (in the IOU). The timing

in this case would be accurate only if no faults (requiring IOU

157

reconfiguration) occur. This timing could be obtained by

dividing from the master clock, with or without a reset at

each CTI period.

The master clock, program cycle timer and status check window generator

should be located in the RCU. The redundancy management system of Fig-

ure 3-22 is used. None of these timers need to be protected by passive

redundancy because the HCU will detect failures in the RCU indirectly

when they cause distinguishable operational failures.

The RCU is a preferred location for the master clock and the program

cycle timer because the operation of the RCU should not depend on

functions provided by the units it is supposed to reconfigure, and the

clock and timers are more reliable than the ACU's and, therefore, should

not be replicated as much.

3.4.5 External Communication

This subject generally relates to the signal interfaces between the

processor and peripheral system electronics or the command, telemetry,

or other systems of the spacecraft. These interfaces input and output

from/to the processor are termed I/O functions and they are handled by

the Input/Output Unit (IOU).

3.4.5.1 Peripheral Interfaces

The peripherals refer to the sensors, actuators and associated electronics

within the control system that must communicate with the processor. It is

desireable that all peripheral interfacing (with the possible exception

of the back-up electronics mode/use control and analog telemetry of

low rate) be through the processor and not direct to other systems.

158

A given peripheral may have outputs or inputs (or both) which inter-

face with the IOU, as shown in Figure 3-34.

** * . Commands
Peri pheralEs Communications

If the peripheral is a sensor it will primarily have outpuelemetry

ACU
IOU

MB I emori es

Processor

Figure 3-34
General Exernal Communications

If the peripheral isa sensor, it will primarily have outputs (signal,

mode status, BITE, etc.) but it may also have inputs for power control,

mode control, biases, thresholds, etc. If the peripheral is an actuator,

its electronics will primarily receive inputs (biases, signals, power

or mode control, gains, etc.), but it may also provide outputs (speed,

position, mode status, BITE, etc.).

Because both sensors and actuators (includi-ng their electronics as part

of the sensor or actuator), can function to either accept inputs (receive)

or provide outputs (send) from/to the IOU, these peripherals will si.mply

be characterized as being "senders" or "receivers".

The sender or receiver can produce/accept the following types of data:

o Senders - Bilevels, Discretes, Analog, Digital Nfords

(serial or parallel)

Receivers -Bilevels, Discretes, Analog, Digital Words

(serial or parallel)

159

Here, a discrete is a bilevel of momentary character. Not all senders or

receivers will (or should) have all of these types of data. In fact,

certain types of data interfaces should not be used.

Generally speaking, the use of discretes should be minimized or elimi-

nated. The IOU requires more circuitry to handle them as inputs than

for bilevels because latches must be provided to store the discretes

(which are reset upon readout). For bilevels, simpler digital gating

may be used. Discrete generation by the processor is also somewhat

more difficult and usually unnecessary as the receiving peripheral can

be designed to recognize the change in state of bilevel signals instead.

Analog outputs from senders are appropriate if the source is intrin-

sically analog (but a digital signal should not be made into analog).

The IOU will require an analog multiplexer and a single, shared A/D

converter for these inputs. The A/D converter will require an accuracy

and resolution commensurate with the most severe requirement on any input.

A 12-bit A/D converter is realizable and adequate.

Analog inputs to receivers are undesireable. Any signal that is ultimately

needed in analog form in a receiving peripheral originates in digital form

in the processor. Of necessity it is time-quantized sampled data. The

choices would be to provide a shared D/A converter in the IOU, together

with analog output multiplexing; or to send the data to the peripherals in
digital form, with a D/A converter in each receiving peripheral. In
either case, because the data origination is non-continuous, some "holding"
of data must be done between updates. In the first case this would have
to be done in analog sample-hold circuits in each receiving peripheral.
In the second case, it can be done in holding registers in each peripheral
receiver.

The two choices are shown in Figures 3-35 and 3-36. Analog sample-hold

circuits are somewhat difficult to design and also tend to "forget" as
they discharge. They also take more parts to create them than digital
holding registers. The D/A converters in Figure 3-36 can each be de-
signed for just the number of bits of resolution/range needed on that
output. It can be shown that the circuitry of Figure 3-36 is less

160

complex and requires fewer parts. For this reason, as well as for its

"perfect" memory, it is the best choice. Analog outputs from the IOU

are therefore not necessary.

IOU I

I ' Sample/Hold Analog -1

ta /A nalog Peripheral Receiver -1
Generation Converte Multi- i Peri

SC plexer I I Peripheral Receiver -2

Sample/Hold Analog-n

Figure -3,35
A Method For Analog Handling of Processor "Analog" Outputs

IOU

s d r d D/A Converters Analog -1

Data Digital i Parpheal Reci gyr -1_
Generation Gating I Peripheral Receiver -2

ldi D/A Convert- Analog -n

Figure 3-36

A Method For Digital Handling of Processor "Analog" Outputs

161

As far as the choice between serial and parallel digital data interfaces

are concerned, the serial is to be much more greatly preferred. Parallel

data interfaces are simply a quantity of bilevels and require much more

IOU circuitry, no real savings of circuitry in the receivers and provide

no real speed advantage (which would not be needed in any case). All

digital data word interfaces will therefore be assumed to be serial (for

both senders and receivers).

The senders or receivers therefore should produce/accept only the follow-

ing types of data:

* Senders - Bilevels, Analog, Serial Digital Words

* Receivers - Bilevels, Serial Digital Words.

The bilevel inputs or outputs should be dedicated to each sender/receiver

function. Therefore, there will be as many lines as there are signals

and sources or destinations. Cross-strapping can be normal (See Section

3.1.3) or it can be by duplication at the IOU. The latter should be

explained.

See Figure 3-37 . Here it is assumed that each element is composed of

two blocks. One sender bilevel and one receiver bilevel are shown.

Input
Bilevel A output

-1 Input Outout

Bilevel Bilevel -1
S B Gating Gating BI

Sender -A ___ I IOU - A Receiver - A
Sender - B IOU - B IReceiver - B

Input Output
Bilevel Bilevel .

Input 8 Gating Gating. Output

Bilevel ilevel
-1 I I I

Figure 3-37

Duplication Cross-Strapping (for Bi-levels)

162

Each of the peripherals has the normal cross-strapping, but the IOU

duplicates the inputs (and the outputs) to provide the equivalent of

cross-strapping. The processor keeps track of which block of each element

is on (in use) and addresses the proper input and output (sets).
This

saves the cross-strap circuits in the IOU, but at the expense of double

(assuming single-standby redundancy in the peripherals)
IOU bilevel

inputs and outputs, and some slight software overhead.
The alternative

is the conventional cross-strap circuitry of Figure 3-14.

The analog inputs redundancy is best handled by duplication (wherein

the processor keeps track of the functioning block of
each element) also.

In this case, the added analog multiplexer inputs are much more economical

than analog cross-strapping.

The remaining interfaces are serial digital words. There are some

tradeoffs in how these interfaces are best accomplished, that are
dis-

cussed in the next section.

3.4.5.2 Serial Data Word Interfaces

Consider first the situation where the data originates in a sending

peripheral. This data generally is updated into a counter or register

in the sending peripheral asynchronously with the processor clock or

cycles. The updating may be more or less frequent than the readout.

o If the readouts are less frequent than the updates, then the

readouts between updates should be repeats. (Reading the

same thing on subsequent readouts is less confusing to the

processor and then the new update need not be signalled across.

o If the updates are more frequent than the readouts, then the

readout can be destructive and the updates must each replace

the older data.

The data should be clocked into the IOU using a processor clock. This is

usually done using a two-phase clock arrangement, with one clock clocking

the data in and the other(IOU internal one) reading the data.

163

The best interface approach appears to be to use a shared input data

line from all sending peripherals into the IOU, together with a peri-

pheral clock which goes from the IOU to all sending peripherals.

Each sending peripheral must be told when it is to shift the data from

its register into the (shared) serial input register of the IOU. This

can be done in several ways:

* Separate bilevel word gates to each sending peripheral.

* Separate, selected clock signals to each sending peripheral.

* A parallel coded address bus going to all sending peripherals,

wtih each detecting its own address.

* A coded address sent in serial to all sending peripherals,

with each detecting its own address.

A tradeoff has been made between these approaches. This tradeoff starts

with the COPE approach (separate bilevel word gates) and the signal

terminology used in COPE.

The approaches will be described in terms of number of inputs and out-

puts for IOU and peripherals. Then connector pins, line lengths and

circuit differences will be calculated. To perform the tradeoffs, a

system of average complexity is assumed:

* Two IOU's (single-standby redundancy)

0 All peripherals use single-standby redundancy (two blocks per

element)

0 Two elements which only send data

• Two elements which only receive data

* Twelve elements that both send and receive data.

Both sending and receiving peripherals are covered in this same tradeoff.

164

Also assume that connector weight is proportional to the number of pins

(not quite true) and that line wire weight can be calculated
as follows:

o Assume all "units" (or blocks) are equal distance from each

other (unit distance)

o For each signal on a "bus"-type line, we use daisy-chain wiring,

resulting in: (n = total number of peripherals)

IOU-Peri- total length = n + 2

Peri-2

IOU-2
Peri-n

o For each signal on a non-bus-type line, point-to-point wiring

must be used, resulting in:

SIOU-1 Peri-1 total length = 2n

Peri-2

IOU-2 i

Peri-n

The four approaches are:

o Separate Bilevel Word Gates

Each IOU has the following outputs:

DATAI - A & -B

CLKP - A & - B

BUSBL

up to 16 - SBLOXX go only to the peripherals, as needed.

up to 32 - SBLIXX J

165

And the inputs:

DATAP-A & -B

Each peripheral has the following inputs:

DATAI -A & -B (for senders)

CLKP -A & -B

BUSBL

SBLIXX (for senders)

SBLOXX (for receivers)

And the outputs:

DATAb-A & -B (for receivers)

All inputs/outputs from/to each peripheral need bus senders/receivers

except BUSBL). The same is true of all inputs/outputs from/to the

IOU (except SBLO & SBLI, which are assumed cross-strapped by duplication.)

The IOU contains SBLO and SBLI decoding (6MSI & 10 SSI) circuitry. The

peripherals contain only the data gating into shift registers (which

all of the approaches have in common).

* Separate Selected Clock Signals

Each IOU has the following outputs:

DATAI -A & -B

BUSBL

up to 16 - CLPOXX go only to the peripherals, as needed

up to 32 - CLPIXX J
And the inputs:

DATA0 -A & -B

Each peripheral has the following inputs:

DATAI -A & -B (for senders)

BUSBL

CLPOXX (for senders)

CLPIXX (for receivers)

166

And the outputs:

DATAO -A & -B

The only circuitry differences from the separate bilevel word gate

approach is the need for "and" gating of the CLKP internal to the IOU

(about 12 SSI added). There are no savings in the peripherals.

o Coded Bilevel Address Approach

The IOU has the following outputs:

DATAI - A & -B

CLKP -A & -B

BUSBL

6 wire Address Lines (-A & -B) Allows up to 64 addresses.

And the inputs:

DATAO -A & -B

Each peripheral has the following inputs:

DATAI -A & -B (for senders)

CLKP -A & -B

BUSBL

6 wire Address Lines (-A & -B)

And the outputs:

DATA -A & -B (for receivers)

All inputs/outputs from/to each peripheral need bus senders/receivers

(except BUSBL). The same is true of all inputs/outputs from/to the

IOU.

Each peripheral sender or receiver needs a decoder (1 SSI) to decode the

six lines and generate an internal word gate.

The IOU does not need any decoders, but each of the peripherals do. This

adds approximately 1 MSI and 1 SSI to each peripheral and saves 6 MSI

& 10 SSI in the IOU.

167

Also added are 6 x 2 senders (2SSI) to each IOU and the same for

receivers (2SSI) to each peripheral.

INote that the peripheral cross strapping is here more conventional and

the two (or more) redundant blocks of the same element will have the

same address and the processor does not need to keep track of which is

on, since only the on block will respond.

* Serial Coded Address Approach

The IOU has the following outputs:

DATAI -A & -B

CLKP -A & -B

BUSBL

And the inputs:

DATA0 -A & -B

Each peripheral has the followtng inputs:

DATAI -A*& -B (for senders)

CLKP -A & -B

BUSBL

And the outputs:

DATAO -A & -B

All inputs/outputs (except BUSBL) need bus senders/receivers. The

assumption is made here that the coded address is a part of the DATAO

(serial output data line). Six bits are added in the MSB position.

All peripherals would shift in all bits of all words on the word line

in synch with the gated clock. Only the one peripheral whose address

is proper (as determined by the MSB's (address) as decoded in the

peripheral) would permit storage and "execution" of the data portion

of the word.

Inputs to the IOU would require handling in a different manner. First

the peripheral would need to be addressed (in the same manner as for an

IOU output) with a code indicating a serial IOU input (peripheral output)

168

will follow. Then the next "word length quantity" of clock pulses will

cause the word data to shift into the IOU on the serial input word line.

The bilevel decoders in the IOU (6MSI & 10 SSI) could be deleted.

Address decoding would be needed in each peripheral.

Note that a much longer time is required to input data to the IOU (the

address time, plus two serial words of data).

The important characteristics are summarized in Table 3-10. This data

is used to provide the further summary of Table 3-11 , where comparisons

are made to the COPE approach.

It is seen that neither of the coded address approaches are favorable.

The separate selected clock signal approach has a slight weight advantage

and a slight part count disadvantage, relative to the separate
bilevel

word gate approach, and either of these might be selected.

TABLE 3,10 .SUMMARY OF PERIPHERAL DATA GATING COMPARISONS RELATIVE TO

SEPARATE BILEVEL WORD GATE APPROACH

Separate Selected Coded Bilevel Serial Coded

Characteristic Clock Signals Address Address

Circuits Add 7SSI Add 20 MSI,80SSI Add 74MSI,172SSI

Circuit Weight*(lb.) +0.2 +2.0 +5.0

Line Lengths -34 +84 -118

Line Weight #(lb.) -0.3 +0.7 -0.9

Connector Pins -68 +200 -176

Connector Weight $(lb) -0.3 +1.0 -0.9

Net Weight (lb.) -0.4 +3.7 +3.2

Complexity Increase slight large quite large

* - Assumed 50 IC per pound

- Assumed 2 feet average per length at 4 lbs/1000 ft.

$ - Assumed at 0.005 lb/connector pin.

169

SEPARATE BILEVEL SEPARATE SELECTED CODED BILEVEL SERIAL CODED
CHARACTERISTIC WORD GATE (COPE) CLOCK SIGNALS ADDRESS ADDRESS

IOU Bus Senders 8 6 32 (add 4SSI) 8

IOU Bus Receivers 4 4 4 4

Peri Bus Senders 56 56 64 60

Peri Bus Receivers 120 88(delete 5SSI)512 (add 64 SSI) 128

Decoders, IOU 2 2 0 (delete 12 MSI, 0
20SSI)

Decoders, Peri 0 0 32 (add 32 MSI 32 (add 64 MSI,
32 SSIH 160 SSI)

Encoders, IOU 0 O#(add 12SSI) 0 2 (add 10 MSI,
12 SSI)

Line Lengths 252 218 336 134

Connector Pins, Per IOU 67 65 19 7

Connector Pins, Per Peri* 9 7 19 7

Connector Pins, Total 414 346 614 238

TABLE 3-11

COMPARISON OF PERIPHERAL DATA GATING APPROACHES

* For those both sending and receiving
For the clock gating circuits

The circuitry used in the peripherals for sending and receiving should

next be discussed. Note that a single peripheral block may be a sender

only, a receiver only, or both a sender and a receiver. It may also

send and/or receive more than one word. One word gate enable will be

received per data word sent/received per peripheral block.

For a receiving peripheral, the circuit block diagram would look like

Figure 3-38. Here, it is assumed that three words might be received

by this peripheral. The shift register and control logic are shared by

all words.

Output * - Peripheral Bus

Data Shift
Line* Register if needed

Clock* Control

Enable A-- Logic

Enable B Holding Holding Holding
Enable C Reg -A Reg - B Reg - C

Enable C

Figure 3-38
Receiving Peripheral

When the enable goes high (any enable appropriate to this peripheral)

the clock shifts the data into the shift register from the data line.

When the enable goes low, this data is parallel transferred to the proper

holding register, updating (replacing) the data there, which is then

remembered until the next update.

The outputs of the holding registers may be used in the peripherals as

needed. Some uses are:

o inputs to D/A converter for analog outputs.

o inputs to counters, etc.

o bilevel functions (such as valve on/off, etc.)

o other decoded functions

171

The circuits for the shift register (assumed 16 bits), control logic

and one holding register require 8 MSI & 2 SSI. Each additional holding

register requires 4 MSI & 1/2 SSI. This does include peripheral data bus

receivers (not shown above).

If fewer bits are needed, the registers may be shortened (at the rate of

1 MSI/4 bits), but the data must be placed in the MSB's of the word.

For a sending peripheral, the circuit block diagram would look like Figure

3-39 . Here, it is assumed that two words might be sent by this peripheral.

Again, the shift register and control logic are shared by both words.

z 7 if needed

Counter/ Counter/ clock *
Register - Register B

Control Enable - A

Logi'c Enable - B

Input
Shift 'Data
Register DaLineta

End round - Peripheral Bus Line*

Figure 3-39

Sending Peripheral

The case shown is where the peripheral accumulates data on a cyclic

basis in a counter or equivalent. As each cycle is completed, the

"counter" parallel transfers the data into the shift register (unless

the enable is high).

When the enable goes high, the clock shifts the data out on the data

line to the IOU and also recirculates the data back into the shift

register input (to allow subsequent reads prior to cycle end.) The

logic prevents updates while a readout is occuring.

172

Another case may occur where the data is always available (in parallel)

and no cycles are involved. For this case, when the enable goes high,

the parallel entry of data is disabled, and the data in the register is

shifted out. No recirculation is necessary.

The circuits require (not including the counter or equivalent) approxi-

mately 4 MSI & 2 SSI for 16 bits, including peripheral data bus inter-

facing. Again, fewer bits (and parts) may be used, but here the data

will be placed on the LSB's of the word.

For some applications, it may be feasible to combine the circuitry for

sending and receiving data, as shown in Figure 3-40 . Here, only one

input and one output word are shown.

Here, the shift register is used for both inputting and outputting data,

with an attendant savings (4 MSI) in circuitry. The logic controls the

transfers and shifts appropriately.

Note that this circuit may have other utility, since it can be used to

transmit a received (inputted) word back to the IOU, confirming proper

receipt. This word could be compared with the sent word in the processor

as a check of the peripheral data loop.

Counter Control Enable - in

or Equiv. Logic Enable - out

Clock*

Otput Input

Data Shift Data
Line Register Line*

End around
(if needed)

Holding

Reiste - Peripheral Bus
-- ",

Figure 3-40

Figure 3-40 Sending and Receiving Peripheral

173

3.4.5.3 Command and Telemetry Interfaces

Requirements for the command interface are:

* Full IOU buffering to permit asynchronous command entry.

* Assume that partial command decoding will occur outside the

control system (in a "command" subsystem). The IOU would then

receive the following signals:

- Command data line

- Command clock

- Command enable (word gate)

- Command execute, verify, parity, or whatever (optional)

The command system will strip off all other.data, decoding the

"system" address and enabling the IOU (through the word gate

enable).

* The "command system" will be redundant and all command lines

will be cross-strapped into the IOU(s).

* Command clock rates will most probably be in the 100 - 300 Hz

range, but rates down to essentially zero may need to be

accomodated.

* The command system of different spacecraft may have differing

"word" lengths ranging from 8 bits upward to perhaps 16 bits.

The IOU design must be able to accomodate these variations.

* The required word length for a command is dependent on the follow-

ing factors:

- the data word length of the processor

- the address capability of the processor

- the presence of check bytes/bits in the word

174

We will consider here ranges of:

- 16 to 24 bits for data words

- 8 to 16 bits for addresses

- 0 to 4 bits for check bytes/bits

o The word should be arranged so that the address occupies the
LSB

position and the data the MSB position. The check byte/bit may

be between address and data portions, following data or both

places.

o To obtain the needed command word length for the processor may

take the sequential receipt of several "command system" words.

Examples are shown below:

NUMBER OF COMMAND SYSTEM WORDS NEEDED

.ommand System Needed (Processor) Command Word Length
ord Length 24 - '28 32 36 40 44

8 3 4 4 5 5 6

10 3 3 4 4 4 5

12 2 3 3 3 4 4

14 2 2 3 3 3 4

16 2 2 2 3 3 3

o If the processor uses check bytes for error detection, the check

byte should be included in the command word. This ensures

accuracy (or non-execution) in the received command.

o The IOU must contain a command buffer register which can

contain the entire needed command word length. (Alternately,

the command can be received in two parts, address first and

data last, but with more complexities in the software.)

175

The processor must "keep track" of the proper number of received

"command system" words (by counting the falls of the command

enable signal.) When this count indicates that a whole message

has been received, the buffer register is emptied and readied

for the next command. The counting should be done in the IOU.

The routine is as follows:

- Periodically, the program examines the IOU command counter

to see if a command is ready for processing. This is done

with a SBL instruction (set bilevel). A "no response"

indicates a return to the program. A response indicates the

command is ready and sets a bilevel in the IOU.

- The INS (input serial) instruction is then executed as many

times as necessary to read the command address and data into

the accumulator.

- The RBL (reset bilevel) instruction is then executed to

free the command buffer for the receipt of new command

messages.

- Other instructions are also needed for routing of the address

and data portions of the message properly.

Protection must be provided to prevent writing of a command into

"program" memory unless precautions are taken to prevent errors.

This can be done by "lock & key" techniques or equivalent. (See

Section 3.4.7.)

As stated elsewhere, the processor should handle all control

system commands, except for:

- Those needed for "lock & key" input enable/disable

- RCU override. control of reconfiguration or on/off status.

176

o The IOU command circuitry on COPE (32 bit buffer) required

4 MSI & 4 SSI.

Requirements for the telemetry interface are:

o Full IOU buffering to permit asynchronous interfacing with

the telemetry system.

o Versatility in IOU design is required to permit interfacing

with a variety of different configurations of spacecraft

telemetry systems. *Those variations might include:

- Word size (6 to 24 bits)

- Frame size (almost anything l'n multiples of 2n)

- Clock Rate (4Hz to 4KHZ)

- Use of sub-commutation

- Word Rate (wide range)

- Frame Rate (wide range).

o The degree of control exerted by the telemetry system on

the control system data entry should be minimized. In

explanation:

- Requiring particular data formatting, such as sun

sensor yaw error in a particular main frame/subcom

word slot would require an unfortunate degree of control

of the processor by the telemetry system.

- Such formatting would require many inputs to the IOU

to provide the control, would slow-down the processor

(effectively "slaving" it to telemetry), and would

provide no real advantages.

o A better approach would be to assign "blocks" of words to the

control system within the telemetry format. These words are

best contiguous. On the ground these words are only known

to be "control system telemetry". The words are individually

identified by use of an identification word within the control

system words. To make this more clear, consider:

177

The telemetry main frame normally consists of a square

matrix of words. (Assume, for example, 8 x 8 = 64 words.)

The first few words are dedicated to synchronization,

ID, etc. (Assume 8 words).

Some main frame words are subcommutated for slower data

rate uses (assume 8 words).

The remaining main frame words are dedicated to the

various spacecraft system telemetry needs. (Assume the

control system gets the last 24 words.)

See the figure below:

8 words

Synch, ID.- 8 words

Subcom - 8 words
8 words 64 words

total
Other Systems

24 words

Control System

"Block" - 24 words

This frame repeats over and over again. The "normal"

decoding on the ground counts words from the beginning

of the frame to locate (identify) any particular data

word. This is a decommutation process.

The control system block is decommutated only to identify

the block (not individual words) and the entire content

of that block is recorded, with sequential blocks follow-

ing each other.

178

The processor generates an identification word which may

reside in any word slot of any of the control
system blocks.

These identification words are separated by
all of the

unique control system data words of
that particular control

system telemetry format (sequence). This sequence length

may be more or less long than the block
length and is not

tied in to the start of the block.

The decommutation of the control system telemetry data

on the ground is done by the word position relative
to

the identification word.

The telemetry system word length and the control system

word length need not be the same.

o The approach as outlined above has several advantages:

- It permits completely asynchronous operation of the

systems.

- Programable (commandable) telemetry formatting of control

system data is enabled. Any program for the formatting

may be commanded into the processor, as
long as its

inverse is used on the ground for the decommutating.

Thus the format may be changed at will, providing an

extremely powerful tool for:

- System monitoring

- Verification of memory

- Verification of command data

- Error Diagnosis

- The requirements on the spacecraft telemetry system are

eased.

o Note that another, somewhat less flexible approach
can be used

that has the advantage of more conventional ground data de-

commutation. The change is only to force the control system

179

data to repeat starting with the start of the block. This

implies:

- No need for an identification word

- A need to constrain the sequence length to the block

length (or integral multiples of the block length)

- A variable format within these constraints can still

be enjoyed.

- The processor must keep track of the start of the blocks.

* The telemetry system is assumed to be redundant and all lines

from/to the IOU are cross-strapped.

* Since the clocking of telemetry is assumed to be continuous

(no gaps, except between "blocks"), and since the total block

length is expected to be long (at least 128 bits), and since

the higher telemetry clock rates are quite high; the IOU could

not be expected to load a buffer register(from the ACU)

between telemetry clock pulses. Therefore, dual buffer

registers will be needed, with one being loaded while the

other is emptied and vice versa. The size of the buffers

should preferably be a common multiple of the processor word

length and the telemetry system word length. A size equal

to the block length is ideal.

* The inclusion of the check byte/bit on the telemetry words

is optional (if they are used in the processor), depending

on the need for confirmed accuracy on the ground of the re-

ceived data and the need for a suitable "checker" on the

ground. Generally the check byte/bit would not be used.

* The buffer length minimum (and block length minimum) can be

determined from the table below:

180

MINIMUM BLOCK & BUFFER LENGTH (bits)

Telemetry Word Processor Data

Length (bits) Word Length (bits)

16 20 24 28

6 48 60 24 84

8 16 40 24 56

10 128 20 120 140

12 48 60 24 84

16 16 80 48 112

20 80 20 120 140

24 48 120 24 168

For COPE it was decided to make the buffer length 256 bits,

since this was bigger than any of the minimums above and

was well suited to the use of a 256 x 1 bit RAM chip. (1 LSI).

o The interfaces with the telemetry system are as follows:

- Telemetry data line

- Telemetry clock line

- Telemetry word gate (for telemetry system word lengths)

- Telemetry synch signal. (This is preferably a signal that

indicates the control system block enable.)

o The IOU must contain logic to alternate the buffers and note

when they are empty (unloaded). The buffer entry status may

be determined by the program.

o The routine is as follows:

An SKE (skip on external) instruction tests whether a

buffer is full or empty. If full, the program proceeds

and retests later. Note that this test period must be

fast enough to ensure that the data is always loaded and

ready when needed by telemetry. This test period must

be faster than the buffer unload rate (buffer length x

telemetry clock rate) including the service time for the

buffer (testing & completion of load).

181

If the buffer is empty, a SBL (set bilevel) is ex-

ecuted to enable buffer loading.

An ARC (serial output) instruction is used to load the

buffer. The software keeps track of the number of words

necessary to fill the buffer.

A RBL (reset bilevel) completes the load.

The main program is re-entered and a test is made again

within the test period.

* The telemetry synch signal enters the IOU as a bilevel input

and can be tested to indicate the start of the control

system block for format start or to issue a sequence start

identification word, etc.

0 Note that neither the processor or the telemetry system needs

to know which of the two buffer registers is in use at any

time.

* Note the considerable power that command-variable telemetry

formats can provide. It may also be possible to vary the for-

mat in the telemetry system, expanding or contracting the

control system block size and/or the telemetry rate, adjusting

the quantity and frequency of data upon need. This is a

significant advantage of control systems employing processors

since the advantage can be obtained at practically no cost.

* As stated elsewhere, the processor should handle all control

system telemetry, except for:

- That needed for RCU monitoring

- (Possibly) some low-bandwidth housekeeping functions,

such as (analog) temperature measurements.

* The IOU telemetry circuitry on COPE (dual 256 bit buffers)

required 2 LSI, 4 MSI & 12 SSI.

182

3.4.6 Internal Communication

Internal Communication relates to the internal processor
interfaces

between the ACU and memories and IOU. (And also the RCU, or

equivalent).

These interfaces will be determined by the character of the data

handled. Some idea of this can be obtained by considering the inputs

and outputs necessary for each processor block:
(Assuming a 16-bit

word length).

o ROM
- ROM Enable (bilevel)

- Memory Address (parallel - 15 bits)

- Memory Read Data (parallel - 16 bits)

o RAM

- RAM Enable (bilevel)

- Memory Address (parallel - 15 bits)

- Memory Read Data (parallel - 16 bits/byte-serial - 4 bits)

- Memory Write Data (parallel - 16 bits/byte serial - 4 bits)

- Read/Write Mode (bilevel)

- Clocks (1 or 2 phase)

- Micro-timing (2 phase)(Used only for byte-serial read/write)

o PWM

- Same as RAM, plus ...

- First/Second word (bilevel)

o IOU

- I/0 Function Code(Address) (Parallel - 3 - 4 bits)

- Address Gate (bilevel)

- Output Data (byte serial - 4 bits)

- Input Data (byte serial - 4 bits)

- Data Gate (bilevel)

- Response Line (bilevel)

- Clocks (2 to 4 phases)

183

* ACU

- All of the above, plus ...

- Lines associated with RCU data exchange

- Master Reset (from RCU)

- Program Synch Signal (from RCU)

Not included in the above list are BITE signals, or power control sig-

nals (from RCU or IOU).

Some of these signals are unique and no consideration need be given to

bussing (mostly those associated with the RCU). Most of the signals,

however can be considered as candidates for an internal data bus

(See Section 3.1.3).

The memory address for all memories is common. It is probably de-

sireable to separate the IOU Function Code Address from this. The

memory read data for all memories is common. The memory write data

for all memories is common. The IOU output data might be combined

with the memory write data at some small savings or might be separate.

Similarly, the memory read data and the IOU input data may be separate

or combined.

The clocks should be bussed to all users from their origin (the RCU

in COPE). All of the control bilevels (mostly from the ACU) can be

bussed to the blocks using them.

It was noted in Section 3.1.3 that bussing is advantageous when there

are more than two senders and/or two receivers associated with a

signal. This is generally the case in the processor. Also, the

probable need to accomodate different numbers of memory modules (to

handle different mission requirements) makes a bus structure

advantageous.

Consideration might also be given to bi-directional bussing (rather

than the uni-directional approach discussed above). This might provide

a slight savings in circuitry, but care must be used that the data is

separated in time.

184

3.4.7 Memories

The function of the memory in a processor
is to store data and in-

structions for the control of and use in the processor operations.

Although some such information is also transiently
stored in the

registers of the arithmetic and control
unit, the memories are herein

defined to mean the centralized memories serving
as repositories of

data and instructions which may be addressed
from the ACU to read

words out of(for all types of memories) or to write words into (for

some types), the ACU.

These centralized memories must all, therefore, be addressable and

readable; and some must be writeable. The memories are organized as a

matrix of bits into so many words of so many bits each. Usually the

data and instruction word sizes are made the same
(see Section 3.4.2)

and all memories of a given processor have the
same word length. The

number of words is chosen to suit the needs of each given
memory type

(within hardware quantization constraints).

Memories may be volatile, non-volatile, or semi-volatile.
Volatility

is the property of maintaining (not forgetting) all words stored,

even with the power off. A volatile memory must have all words re-

written following the resumption of power. A semi-volatile memory can

remember for a short time(usually < 1 second)
and then forgets. Such

a memory is used to protect against alterations due to short
power

transients.

The information that must be stored in memory
is of essentially three

types, with differing requirements:

o Fixed data or instructions: This includes the program

executive, non-variable routines and diagnostics,
constants

and other data that need never be changed once
the system is

built. This information must be non-volatile and may
not be

written into from the processor (some types of
memories

enable this information to be altered by reprogramming the

memory, prior to flight, using special test equipment.)

185

* Variable data or instructions: This includes variable routines

and diagnostics, mode information, "constants" that may need

changing and general program variables. This information may

be changed through the action of the processor, either as a

result of the processing or through ground-derived commands to

the spacecraft. Some of this information may be volatile,

some should be semi-volatile, and it is even desireable that

some (such as mode control) be non-volatile. Some of this in-

formation should also be "protected". That is, protected so

that processor faults have a much reduced probability of

erroneously writing into these portions.

* Read/Write information: This portion of the memory serves as

a "scratch-pad" for relatively short term memory of the

intermediate results of computations, of data inputs and out-

puts, etc. Such information may be recreated if it is lost

and so it may be volatile. This portion of memory may be read

into from ground-derived commands, but needs no protection.

The first type of information storage leads to a type of memory known

as a Read-Only Memory, or ROM. This memory can not be written into by

the processor. The information is entered (programmed) at manufacture

or by a special process, if the ROM is of a reprogrammable type.

The third type of information storage leads to a type of memory termed

a Random Access Memory, or RAM. These are also sometimes called read/

write memories. This memory can be written into by the processor, or

through the processor, while on the ground or in flight. This type of

memory may be and is volatile and no write protection is needed

(although coding can be used (see Section 3.6.1).

The second type of information storage produces several alternative

memory types. All of these memories must be writeable through or by

the processor, but for some information write protection is needed and

for some it is not. Also, for some of the information, non-volatility

is desired or required; for some, semi-volatility seems essential; and

some may be volatile. The combinations lead to the following choices:

186

o Volatile and unprotected - the normal RAM is suitable.

o Semi-volatile and unprotected - A RAM may be modified to

provide semi-volatility by slowing the decay of power with

line capacitors. This is particularly applicable where the

RAM power is low, such as when MOS technology is used.

o Non-volatile and unprotected - there probably is no require-

ment for such a combination.

o Volatile and protected - there probably is no requirement for

such a combination.

o Semi-volatile and protected - A memory type (herein defined as)

a Protected Write Memory (PWM) is needed for this requirement.

Its needed characteristics and design will be discussed later

in this section.

o Non-volatile and protected - This memory information is the

most "hardened" of the information that is writeable and

should be restricted to a few words of mode information, etc.

This memory type will be defined as Hard Core Memory (HCM)

and its characteristics and design will be discussed later

in this section also. This HCM may not be a part of the

generalized processor memories, but because of its small

size in number of words, and special character, may be

located in other parts of the processor or system.

Another type of memory is very useful and is not covered by the previous

discussions. This is the Alterable Program Memory, or APM. The APM may

be used interchangeably with the ROM for ground testing and software

development and test. It simulates the ROM relative to the processor,

but its information contents may be changed in whole or in part from the

test set by manual or tape inputting of new information. It may or may

not be volatile, depending on design.

187

In all of the preceding discussions on memories it should be noted that

volatility is not a desireable feature as such. It's presence in some

types of memories can be tolerated (as noted), but the less volatile a

memory is, the better it is (all other features being equal) for a

fault-tolerant processor.

Other memory features of importance include the normal parameters of

power, weight, volume, reliability and cost; as well as speed. Any

memory should be compatible with the speed of the remainder of the

processor in both reading and writing. Power is extremely important

since the memories may use more power than all of the rest of the

processor. Where feasible, power gating should be used to minimize

average memory power consumption. This is only possible in non-volatile

technologies, although some approaches permit "idleing" at reduced

voltage without loss of memory between read or write accesses.

From its earliest history, the computer art has devoted a large part

of the work to memory development. From the earliest drums, storage

tubes, etc. up to the latest devices of today, hundreds of different

memory types have been invented and used.

At the present time, however, three basically different technologies

are in use, and applicable to, spacecraft systems. They are magnetic

cores, plated wire, and solid state memory systems. All are relatively

competitive in speed. In other respects, there are marked differences.

* Magnetic Cores - This is probably the oldest technology, but

seems somewhat arrested in terms of maturity. It is intrinsi-

cally non-volatile, can be made writeable, selectively writeable,

or non-writeable. It can be designed with protection or

selective prQtection. It can thus be used as a ROM (with no

APM needed), a RAM, a PWM, or a HCM (with a few tricks). Un-

fortunately, it requires a great deal of read and write

circuitry and relatively high power while being accessed. It

does not suit itself well to division into the small sizes

necessary to meet long-life spacecraft reliability. To do this

also imposes additional power penalties. It is relatively

188

expensive (mostly in the read/write circuits) and gets even

more expensive as the size goes down.

o Plated Wire - Most of the comments on magnetic cores apply

also to plated wire. This is a newer, and yet more mature,

technology. It is somewhat less expensive and up until recently

has been the primary memory choice of spacecraft systems.

o Solid State - Solid state memories are the newest, but the

fastest evolving of the technologies. There are many diff-

erent semi-conductor approaches used, each with their
own

relative advantages and disadvantages (to be discussed later).

All of them have several common features. All viable candidates

use large scale integration techniques to pack a maximum
of

of bits in each chip. Currently, from 256 to 8,000 bits can

be obtained in each integrated circuit package. The power

levels are dropping and the power per bit now has a wide

range, both higher and lower than the cores and plated
wire;

but advantageously lower in the small memory sizes. The cost

per bit has also lowered markedly, making solid-state
the

lowest cost, particularly in small memory sizes. The primary

advantage of solid-state memories is the ease with which they

can be made in small sizes, without power, reliability or cost

penalties. This is particularly true of the reliability,

which is very high since the redundancy subdivisions can
be

made almost as small as desired. An undesireable feature of

solid-state memories is that the RAM's, ROM's, PWM's & HCM's

are all different from each other and non-volatility in writeable

versions is obtained only with some difficulty.

It appears that, for spacecraft processor applications,
the solid-state

memories offer significant advantages in cost, power,
weight and relia-

bility; and these advantages are rapidly becoming even greater
as this

technology advances. For this reason, all further discussions (with

the possible exception of HCM) on memories will
be restricted to solid-

state approaches.

189

3.4.7.1 Solid-State Memories

The solid-state memories are distinguished both by technology and by

organization. There are a great many technologies (as for all semi-

conductor devices) that can be and have been used. (Also see Section

3.4.8). The two most common basic technologies are:

0 Bi-polar - This is the common integrated circuit technology

made up of essentially transistors and diodes of the NPN/PNP

type. This family is fast and radiation resistant, but con-

sumes relatively high power. Many memory devices are avail-

able. The TTL and DTL families are of this type.

* MOS - These metal-oxide-silicon devices are also very

common. A distinction is made between NMOS (rare), PMOS

(the N and P refer to the semi-conductor type of the

channel), CMOS (complimentary), etc. Generally speaking all

are slower than.bipolar, but consume less power. CMOS is

somewhat intermediate between bipolar and PMOS in speed, power

and radiation resistance.

Either a ROM or a RAM part can be made with any of these technolgies.

Either is made as an array of bit positions. Either has a number of

coded address lines as inputs. Internal decoding is used to address

the respective coordinates of the array. In the ROM, the array in-

tersection consists of a diode/or equivalent gate) which, when addressed

produces an output of a zero or a one.

In the RAM, the addressed intersection consists of a flip-flop (latch,

or equivalent), that may be either read from or written into (set to a

1 or 0). Each type of part may be organized so that all bits are read

out on one output or so the bi-ts are in sets, with each set reading

out on different outputs.

190

The quantity of bits of memory in a part (chip) may be different and the

organization of the chips may be different, depending
on the application,

technology, etc. For example, ROM's normally have a density four or
more

times greater than RAM's in the same family. The parts may vary in or-

ganization for the same number of bits. For example, a 256 bit RAM might

be organized as 256xl, 128x2, 64x4, 32x8, etc. The last number is the

quantity of outputs (bit sets). The number of addresses is equal to

the binary representation of the total bits. (For example, a 256 bit

chip has 8 address lines). Each chip will also have a chip enable or

select line for control of which chip is addressed.

The parts are available in binary progressions of bits
(total) starting

at 64 for RAM's and ranging (currently) up to about 1,024;
and at about

256 for ROM's and ranging currently up to about 8,096.

Currently available RAM parts range from 20 to 500 usec in access
time,

with the faster.parts consuming the most power. For bipolar RAM's the

access time and cycle times are about the same. Cycle time is the time

it takes to complete a read or write operation. Dynamic memories have

long cycle times because of the need to refresh the
data. (About every

2 milliseconds).

Static memories are to be preferred over dynamic memories
for fault-

tolerant processors as they are less likely to fault, do not need clocks

and require fewer power supplies. They are also faster, but do consume

more power and cost more.

Examples of currently available RAM's by technology
type, are given in

Table 3-12.

191

TABLE 3-12

CHARACTERISTICS OF CURRENTLY AVAILABLE RAM'S

Technology Bits per Speed (nsec) Power(mw)per chip

Type Chip Access Cycle Active* Standby

Bipolar 64 20-50 20-50 250 250

256 30-60 30-60 350 350

1024 60-90 60-90 500 500

Dynamic n-channel, 1024 60 180 450 60

MOS
Static P-channel, 1024 300 600 450 60

MOS
Static n-channel, 1024 500 500 450 60

MOS 4096 200-350 400-700 350 30

CMOS Static 256 350 350 20 0.2(pw)

1024 600 600 30 0. 3 (vw)

* - Read or write

Any of these speeds are fast enough for a COPE-type processor, which

requires a cycle time < I psec. (For parallel read/write).

The ROM parts may be either factory or field programmed. In factory

programming, a mask is used in the chip fabrication, which contains

the interconnects defining the 1 and 0 bit pattern desired. Once

built, the part can not be changed.

Field programmable ROM's, or PROM's as they are termed, are built with

an array of diodes in such a way that the chip may be placed in a machine

and the individual diodes are addressed and a high current is used to

"burnout" those diodes.not desired, thus programming the chip. This

process can be highly automated. Such programmed chips are not generally

re-programmable, although individual bits can be changed (in one direction

only). Erasable and re-programmable ROM's are also now being developed.

192

Currently available PROM's are listed in Table
3-13

TABLE 3-13

CHARACTERISTICS OF CURRENTLY AVAILABLE PROM'S

(ALL BIPOLAR)

Total Bits Organization Access Time (n sec) Power/Chip (MW)

256 32 x 8 50 500

1024 256 x 4 60 650

2048 512 x 4 70 650

Devices have been announced using MOS technology, ranging up to

16,384 (2048 x 8) bits, but are not programmable. Other MOS devices

are available with fewer bits that are programmable. Some of these

can even be reprogramed using ultra-violet light for erasing.

A new type of memory device using amorphous semiconductor technology

has been developed. These devices exhibit a non-volatile memory and

are effectively re-programable ROM's. The re-program or write pro-

cess is quite slow (10-15 m sec) and involves relatively high currents
7

into low impedances. The reprogramming can occur indefinitely (>10

times) and the non-volatility is dependable.

The device is currently available only in a 16 x 16 bit chip. Read

times of approximately 50 nsec can be obtained. The outputs are not

directly compatible with TTL circuitry

It would appear that this device could find application as either a

replacement for PROM's or as a protected write memory (PWM). In the

first case, the advantage would be the ability to reprogram the

memory on.the ground. In the second case, the amorphous memory could

provide a desired non-volatility.for those portions of memory which

must be changeable and yet not easily loseable.

193

Another approach to non-volatile memory devices is the metal-nitride-

oxide-silicon (MNOS) technology. For low values of applied voltage

the device operates like a conventional P-channel MOS transistor. For

high gate voltages an alteration of the internal electrical charge

occurs, altering the turn-on voltage. This charge can be retained for

several years, providing an effective non-volatility

They are relatively fast, providing write times of 1 - 100 lsec.

Read times are similar. The write operation involves an erase of

all bits, followed by a selective write of l's.

A currently available device is 8 x 8 bits in a 24 lead package. Writ-

ing requires bipolar voltagesA35 volts. Some difficulties have occurred

with compatibility between these devices and either MOS or TTL circuits.

This MNOS device might also be used either as a reprogrammable ROM or

as a PWM. At this time it is not felt that either MNOS or amorphous

approaches are developed-to the point that their use could
be re-

commended.

The technology that is chosen for each of the memory types must be

compatible with the requirements for:

* Speed

e Power consumption

* Radiation resistance

e Volatility considerations

* Chip density

e Cost

e Package style

3.4.7.2 Memory Organization

Each of the memory blocks, of whatever type, must contain many words

of information. This will generally require several memory chips of

either the RAM or ROM type. (We will see how a PWM can be made up of

RAM chips). Also required will be chip address decoding circuits, any

parity or other error detection forming/checking circuits needed, and

194

any redundancy cross-strapping/bus Interfactng/ power control circuits

needed. As the memory size increases, the memory chip count increases

proportionately, but the remaining circuits do not, tending to make the

larger memories more "efficient" in terms of overhead.

On the other hand, the memories should not be made larger than needed

and reliability restrictions on element size (see Section 3.1.1) may

dictate smaller sizes. Also note that if (for example) the chip organi-

zation is 256 x 1, no smaller than a 256 word block can be built (etc.).

Note that power gating may be used with any non-volatile memory. An

enable signal is used by the processor (ACU) to bring the power up to

the memory block (or only a group of chips) just prior to a read (or

write) operation. This can save a great deal of power as the duty

cycle of access is often quite low.

Another aspect of the memory organization is the manner in which the

memory address, inputs and outputs interface with the remainder of the

processor. These interfaces may, in general, be serial, byte-serial,

or parallel. How these interfaces are organized will have major effects

on processor speed. Generally speaking; serial interfaces will be seen

to be too slow for most applications.

Although the COPE processor was designed originally for byte-serial

interfaces for data entry and exit from RAM, this is now seen to be an

unfortunate limitation, and new COPE RAM blocks have been designed for

fully parallel addressing, data entry and exit, with much faster

operation resulting. The COPE ROM's were always designed for parallel

addressing and readout. Note that even if (as in COPE) the processor

is designed for byte-serial arithmetic,.the memory read/write functions

may be (and probably should be) in parallel. The use of parallel RAM

entry and exit in COPE also permits the use of CMOS technology, drasti-

cally reducing the RAM (and COPE) power requirements.

195

The lower power requirements of a CMOS RAM (which are extremely low

rv 1 mw for 8000 bits) when the RAM is not being accessed, permits

semi-volatility to be economically added, simply by increasing the

size of the filter capacitors. Capacitors of 600 uf total will give

one second of memory retention, while still maintaining the voltage

above 90% of nominal. These capacitors must be installed "inside

of the bus or cross-strap interface circuits so their charge does not

leak back into the rest of the system.

It was seen earlier that a protected write memory (PWM) capability was

needed. This protection should reduce the probability of writing in

a word:

* In the wrong address

* Incorrectly in whole or part

e Incompletely.

Only critical program, mode, etc. words should be put into PWM to re-

strict the size. The PWM should also be semi-volatile. The PWM should

use parallel write so that the words either get in or do not, whether

the clocks stop or whatever. (In byte-serial or serial entry, words

might be written incompletely.)

The PWM may be achieved by modifying the standard RAM organization,

as follows:

* Address error can be protected by using a dual address

entry technique. An enabling address is first sent in,

which is stored in a register in the PWM. This is followed

by the "regular" address. The regular address is bit-by-bit

compared (using exclusive or gates) with the stored address,

and if they are the same, is passed on, enabling the write.

A BITE signal may be issued if they are not the same. Note

that the enabling address could be shorter than the regular

one, comprising a sort-of "code word for enabling.

196

o Write word error can be protected using a similar process.

The word is sent in twice, with the first entry being stored

in a register in the PWM. The words are bit-by-bit compared,

and only if they are identical is the word written. Again a

BITE signal could be issued if they are different (indicating

to the processor the need to try writing again).

o The PWM thus needs two extra storage registers of the required

word length, plus the comparison logic. An additional input

would be required so that the enabling address and word would

be distinguished from the "regular" ones. (PWM enable.)

o Although the PWM could contain both conventional RAM (un-

,protected write) and protected write functions in the same

unit, the protected write portion should be segregated so that

conventional write can not occur into ft. The read function can

be the same for both portions.

0 The PWM should have only about a 15% part penalty over a con-

ventional RAM (in the 512 word x 16 bit size).

Note that the key is to prevent words from being erroneously written.

Writing destroys old information, which will be more correct than

erroneous information. The idea is that it is better to retain the old,

than to destroy it completely, if the new can not be trusted.

Reading out of the information may also be done redundantly, under soft-

ware control. This is done by sequential read out instructions. The

read-out information should then be compared (by software control in the

ACU) for identicalness prior to use as an instruction or data word.

It may also be desireable, for the most critical information, to store it

at two or more redundant addresses. This information should also be com-

pared prior to use.

197

If a protected memory is achieved only by writing In redundant addresses,

this is not as good a protection since one word can be written (replac-

ing the old word), and then the second word could be in error (replacing

that old word). Now we have two words that are different and no good way

of knowing which is correct. If three words are written, the protection

is much better, etc.

To achieve Hard Core Memory (HCM), which is writeable and non-volatile

and protected, is somewhat more difficult. This could be done by using

all of the techniques described for the PWM, but using a different type

of circuit for the RAM's chips. This could be technologies such as

amorphous, MNOS, or it could be magnetic in nature (cores, wire latching,

relays, etc.). For the HCM, bits instead of words might be stored and

the HCM might well not be organized like the other, conventional, memories.

The only information needed in HCM should be the processor operational

mode that is current. Note that the system configuration status is

stored in the power control latching relays, if they are used.

Also note that the PWM protection is not absolute and erroneous words

may still be written, although the probability of this is considerably

reduced.

From a redundancy standpoint, note that the use of ROM's, PWM's and

RAM's, provides some characteristics to be aware of.

* If more than one ROM element type is used, they are different

and non-interchangeable.

* If several PWM's or RAM's are needed to be in use at one time

to contain the information required, then these are inter-

changeable (within the PWM or RAM category). That is, any

RAM available can fulfill the function of any RAM required.

(Example: Suppose two RAM blocks are needed to provide

sufficient memory, out of 4 available. Any 2 can do the job.)

198

O Because of this last characteristic, the RAM's (or PWM's)

must be provided with information from the part of the system

controlling reconfiguration as to what address they each are.

This is called the page number.

Sometimes processors are organized so that the IOU and/or peripherals

have access directly into the memory (not through the ACU, as on COPE).

This is done to reduce access time for telemetry/commands or peripheral

data. It is felt that this is not necessary for spacecraft control

system application. It does impose hardware penalties if it is used,

as well as software penalties (to provide non-interference between ACU

and other access). It is also not compatible with a synchronous

program structure.

In summary, the true processor memories that are needed are:

o ROM - for program storage of executive, and unchanging routines

and constants.

o RAM - for read-write and other volatile, short term storage

(although it might as well be made semi-volatile).

o PWM - for variable program and data storage, which should have

protected write and semi-volatile status. It was seen that

a PWM is a RAM with a few additional circuits.

3.4.8 Technology

Technology, as used here, refers to the devices (parts, components)

used in the processor design. These devices have two technological di-

mensions:

o Physical Technology

o Topological Technology

The physical technology refers to the organization from a semiconductor

electronics standpoint of the devices in a family. Most devices are

199

either bipolar or channel semiconductor devices. Bipolar devices may

be TTL, DTL, etc., depending on the organization of the n and p layers

into diodes and transistors and thence into gates, etc.

The channel semiconductor devices are mostly MOS (metal-oxide-silicon)

and may be n-channel, p-channel, complimentary, etc., resulting in

NMOS, PMOS, CMOS, etc. The MOS devices are usually slower and less

radiation resistant than bipolar devices, but they consume much less

power. There is no real difference in reliability.

The choice of parts from a physical technology standpoint must be made

with regard to the speed/power/radiation suseptability standpoint.

There is little cost difference. For most control system processor

applications, MOS parts are adequate for use, although bipolar is better

in every respect except power.

Both basic families of physical technology are about equally applicable

to higher scale integration (more gates or equivalent per package),

although the power dissipation of bipolar can ser(e as an eventual

limit.

The technologies can also be mixed in application if care is used in the

interfacing. Generally, the bipolar parts operate from +5 VDC, while

the MOS parts may use +5V, as well as a higher positive voltage and/or

a negative voltage. Circuits have been developed (as both discretes,

IC's and parts of other IC's) to provide interface compatibility, while

retaining adequate noise margin.

The topological technology refers to the organization from a chip

architecture standpoint. That is, from the "block diagram" standpoint

of what functions the part contains. Generally, this is independent of

the physical technology used.

Parts have been characterized relative to their degree of integration.

Currently, small scale integration (SSI) refers to parts with 1 to 6

gates or 1 to 2 flip-flops, or equivalent, usually in a 14-lead package.

Examples might include:

200

o Hex tnverter

o Quad 2-input NAND Gates

o Quad 2 input NOR Gates

o Quad Exclusive OR Gates

o Triple 3-input NAND Gates

o Dual 4-input NAND' Gates

o 8-input NAND Gate

o Dual and/or/invert gates (and others)

0 Dual JK flip-flop (also type D and RS)

Similarly, medium scale integration (MSI) refers to parts, still usually

in 14 to 16-lead packages, having equivalents of 10-50 gates and/or

4-16 flip flops. Some current examples include

o 4-bit shift-register (also 8-bit)

o 4-bit counter (also 8-bit)

o Decoders (1 of 10 and 1 of 16)

0 Dual 4-bit latch

o Dual 4 input multiplexer (also quad 2 input)

o 8 input multiplexer

0 Comparators (4 and 5 bit)

o 4-bit arithmetic element

o Parity generator/checker

o Monostable multivibrator

Large scale integration (LSI) refers to parts containing still more

circuits, almost without limit. These parts are usually in 24-, 40-

or 64-lead packages; one of the principle restrictions being the

number of leads available.

201

The LSI parts that are non-custom are mostly for memories (see Section

3.4.7). The use of custom LSI is discussed in Section 3.8.

In the bipolar technologies (and to some extent for MOS), there is a

speed/power trade also available. For example, in the common bipolar

TTL 54/74 series, there are available (but not for all topologies) a

range of five speed/power possibilities. The are:

* 54/74 H High Speed 6 nsec 22 mw/gate

* 54/74 S Schottky 3 nsec 19 mw/gate

* 54/74 - Standard 10 nsec 10 mw/gate

* 54/74 LS Low Power 10 nsec 2 mi/gate
Schottky

e 54/74 L Low Power 33 nsec 1 mw/gate

The "54" refers to the broader temperature range (-550 C to +125 0C) and

the "74" to the narrower (00 to +700C) range. This particular family is

available from several suppliers and the range of parts are also

compatible with the Fairchild 93L series, which contains some particularly

useful MSI parts.

The interfacing of parts from different families (of technology or speed/

power) must be done with proper awareness of the loading rules, as they

are often defined differently and must be properly equated. Sometimes

higher power (and faster) parts are used for their drive (fan-out)

capability of driving large numbers of lower power circuits.

A processor could be designed using nothing but 2-input NAND gates. The

use of more part types makes the design job easier and reduces the part

count and the power. On the other hand, the use of too many different

part types is extravagant, since (generally)each part type must be

separately qualified and quantitative discounts might not be realized.

Usually, a part type should not be used unless a sufficient number will

be used (or there is some other, overriding reason). The number of

part types used is one more tradeoff in the design.

202

In summary, the choice of the parts used in the design should be based

on a tradeoff between:

o Speed requirements

o Power consumption

o Fan-out capability

o Logic types available

o Package style

o Availability (number of vendors)

o Cost

IC parts are usually available in DIP's (Dual-in-line packages) or in

flat-packs. The former are usually better for breadboarding and the

latter for flight-use. Flat-packs occupy less volume and are more

suited to multi-layer board use.

While the preceding discussions have been concerned with integrated

circuits, it should be recoginized that some number of discretes will

also be necessary. This use should be minimized. Note that resistors

are available in IC-like packages. The choices of other discrete parts

should be guided by the normal spacecraft high reliability part require-

ments.

The COPE processor design chose to use a mixture of SSI and MSI parts

from the 54/74 families, and the 93L and 9L families. Three Schottky

device types were used, 8 of the standard line, and 28 of the low-power

line. In a redesign, it is anticipated that many of the standard lines

would be replaced by the low-power Schottky devices (that were not

available at the time of the initial COPE design) at a power savings.

This.total of 39 IC-part types (not including memory chips, A/D converter

IC's and discretes) is larger than desireable. It should be possible to

design a processor using current SSI and MSi parts with less than 30

different digital IC part types.

203

3.4.9 Architecture

This section will concern itself with the topological organization

(architecture) of the arithmetic and control portion of the processor.

It will be assumed that the memories and the input/output portions are

separate from the arithmetic and control portion, but connected to it

by means of an internal data bus. It is further assumed that the IOU

contains buffering registers for all input and output data.

The arithmetic and control unit (ACU) provides the central arithmetic

processing, logic processing, and control for the entire processor.

It provides memory and I/O addressing: cycle, program and micro-timing;

instruction decoding; and the necessary registers, counters and logic.

To perform these functions, the ACU must contain one or more adders or

computational blocks, together with a number of registers (or counters)

to temporarily contain data or instructions during the operations. A

minimum set of registers for a processor using indexing and address

modification (see Section 3.4.2) is:

* Arithmetic (or "A") register

* Quotient (or "Q" register

* Address register

* Instruction register

* Memory register

* Data base register

* Index register

Counters that are needed are:

* Cycle counter

* Program counter

* Micro-timing counter

204

Logic and gating are necessary for selecting and routing data between the

inputs, outputs, registers, counters and adders and for decoding instruct-

ions.

A block diagram of the COPE ACU is shown in Figure 3-41 to enable an

understanding of a typical (non-micro-programmed) ACU. Note that COPE is

organized for byte-serial arithmetic and the instructions discussed in

Section 3.4.2.

The adder can provide addition, subtraction, complementing and logical

operations. It is used for these operations not only on data, but it

is also used to modify addresses (indexing), and for all byte-organized

data transfers within the processor. Its two inputs come from the two

data-selectors.. Its outputs can be directed to the A-, Q_, memory-,
or index registers and the program counter. The adder also contains carry

and overflow flip-flops.

The data selectors are collections of logic which route data into the

adder. Data selector-A accepts data from the A-, Q-, or index-registers

and the program counter. Data Selector-B accepts data from the A- or

Memory registers and from the data bus. These selectors are one byte

wide.

The A-register is the primary arithmetic register and is 16 bits wide.

It can shift right or left by one bit or one byte. Serial data can

enter from the Q- register or from the data bus. Byte data can enter.

from the adder. Outputs are to the Q-register (serial) or to either of

the data selectors (byte).

The Q-register is the secondary arithmetic register. It is used for

double precision, multiplication, division and some other operations. It

has the same shift -capabilities as the A-register. It can receive inputs

from the A-register (serial) and the adder (byte). It has outputs to

the A-register (serial) and data selector-A (byte).

The index register is used to modify memory and I/0 addresses. It can

operate as a down counter or a shift register, being loaded from the

adder.

205

Instructions, Data

)ataBus A Register Q Register Register Comparator. Program
SRegister Counter

Index Instruction Cycle Data Base
Register Register Counter Register

Instructio Control Control Address Memory
Decoder Logic Signals Register Address

IOU (
Address

S Data Micro
.iTmi ng

Selector-A Counter

Adder

Data
Data Note: Various control lines, overflows, single bits, etc.

not shown.
Bus Data

Bus

Figure 3-41

Typical ACU Block Diagram

The memory register receives the instructions or data from the memories.

It can also be loaded from the adder. It has outputs to the instruction

register, data base register, and address register, as well as data

selector -B. The instruction register serves as a temporary storage for

instructions from the memory register. The instruction decoder provides

the decoding of these instructions into the control logic.

The program counter is an up counter which is incremented upon each in-

struction. Its output, through the address register,is used for address-

ing. It can be loaded from the adder or the memory register(through a

comparator).

The data base register provides the operand address to the address regi-

ster. It can be loaded from the memory register. The address register

supplies the memory addressing.

The cycle counter is used to count operations performed in multiply and

divide and shifts applied in shift or serial instructions. The micro-

timing counter generates a sequence of "T" times that control the events

occuring in the execution of instructions. The number of states of the

counter is dependent on word length and arithmetic organization. The

counter starts at its initial state on each instruction and goes through

its states in progression, routing data, etc. under the control of the

control logic.

Other, somewhat different, organizations may be used-for the architecture

of the ACU, of course. The problem remains one of organizing data and

instruction flow and processing between the adder (or adders), registers

and counters. Tradeoffs exist between the number and versatility of the

registers (more can be used than the minimum discussed above). These

tradeoffs become between the circuitry.involved (and its attendant

penalties) and the possibly increased speed.and/or programming versatility

possible.

The next section will discuss another type of architecture (or improvement

in the conventional approach), called microprogramming. In Section 3.8,

the use of LSI (as applied to the ACU functions) is discussed, including

the application of so-called microprocessors.

207

3.4.10 Microprogramming

It was shown in the last section how the architecture of the ACU portion

of a processor is conventionally organized. This was seen to be a collect-

ion of relatively special purpose registers and counters, connected to

each other, the adder and inputs and outputs by hard-wired predetermined

logic. The logic is all unique and consumes a major part (60-70%) of the

total part count (and power). The logic is completely determined by the

instruction set.

Just as a programmable set of general purpose electronics (a processor)

has advantages of versatility, cost and power over the special-purpose

electronics it replaces; so can a programmable set of general purpose

electronics (microprogramed) within the processor have advantages over

the special-purpose equivalent.

Microprogramming relates to several concepts. It relates to the use of

the ACU registers and counters as general-purpose (or more general-

purpose) blocks. It includes the concept of having the interconnecting

logic be interchangeable (usually consisting of LSI chips) to provide

completely different instruction sets by changing this logic. It includes

the increased possibilities of speed and/or programming versatility

brought about by the use of general-purpose registers.

A so-called microprocessor need not necessarily be micro-programmed. A

micro-programmed processor need not necessarily.be built using LSI

(although it usually is, at least for the "logic" portion). The logic

could be built of conventional SSI or MSI, but organized in a micro-

programmed way. It could be built on plug-in circuit boards, which could

be interchanged to provide different program sets.

For spacecraft attitude control applications, the ability to more easily

change programs is not particularly important since the instruction sets

are usually the same for all programs. More important is the capability

to have increased versatility in the registers. This can improve speed

since many intermediate results may not have to be stored in RAM. In

208

fact, it is somewhat like putting a part of RAM into the ACU. It can

also (to a slight degree) simplify the software programming.

The most important likely benefit can probably be gained by converting

the logic to LSI, using ROM chips, programable logic arrays (PLA's),

or configurable gate arrays (CGA's) or equivalents, as discussed in

Section 3.8. This can save parts, power, and cost and still provide

the other benefits of microprogramming discussed earlier.

For COPE, approximately 110 IC's in the ACU could be replaced with

10 to 20 PLA's or CGA's. This would save approximately one watt of

power.

209

3.5 Software Design

This section treats the software design for a fault tolerant programmable

digital processor for attitude control system applications. The previously-

developed COPE (Control Processing Electronics) processor, along with the

software system discussed here, are considered for application to the three-

axis attitude control of spacecraft in deep space flight for missions with

lifetimes of up to 10 years.

An important consideration in the overall design of the fault tolerant

control system is software design because of significant implications on

system reliability, operational flexibility, cost, complexity and hardware

requirements. Due to long round-trip communication times to the middle and

outer planets of the Solar System, the control electronics must operate

with a high degree of autonomy. This imposes stringent requirements and

constraints upon both hardware and software fault detection, isolation and

reconfiguration procedures, which must control recovery so as to insure

control system reliabilities on the order of 0.9 over 10 year lifetimes.

The discussion that follows gives an overview of key software design con-

siderations and tradeoffs and describes a recommended executive program

concept for the control electronics processor based on the failure detec-

tion and reconfiguration approach recommended in Section 3.7.

3.5.1 Software Requirements and Design Criteria

The selection of a software organization for multiple applications, provid-

ing fault tolerance and autonomy, is governed by the following general

requirements:

* Flexibility is required in that the design must be adaptable to a

variety of mission requirements.

* Reliable failure recovery is necessary, yet in-line diagnostic overhead

should be as small as possible.

* The set of diagnostics chosen should be powerful enough to ease hard-

ware diagnostic requirements.

* The program execution structure chosen should have a well-defined

behavior, so as to increase operational reliability and facilitate

programming, checkout and verification. A predictable sequence is

210

essential for real-time operations in a fault-tolerant environment.

Thus, conditional interrupts causing execution sequence changes should

be minimized.

o The number of operation modes possible in each mission regime should

be minimized in order to reduce execution verification complexity,

minimize the probability of accidental mode transfers, and increase

recovery speed.

o Critical interfaces should be removed from the digital processor (e.g.,

dedicated control electronics should be provided for any high band-

width loops as this will significantly ease the rest of the burden on

the digital processor)

o The execution of a second job should not be permitted until a first

job that failed has been successfully retried. This implies that

machine capabilities must be restored before successful re-try is

possible.

o Reconfiguration during recovery must be under the ultimate control

of some hardware "Hardcore", which should be one of the most reliable

elements of the system.

o Only the minimum autonomy required should be provided for each mission

phase (in order to increase simplicity and predictability)

o A means of providing fail-safe mode storage and transfers is necessary.

o Program execution should be divided into small segments in order to

minimize the propagation of faults. Frequent processor status and

program execution checks, along with careful preservation of status

and rollback data, are also important in that regard.

3.5.2 Program Organization and Modularity

A reduction in the.cost of onboard software, together with an increase in

reliability, is realizable through the utilization of modular software

structures. Cost savings result from a reduction in the verification and

modification portions of software development. Greater reliability is

achieved through the well-defined properties of the modular structure.

Included in these properties is the explicit definition of software module

interfaces. The following summarizes the prime reasons for modularization:

211

e Systematic program construction is easy to understand, debug and

validate

e Internal interfaces are well-defined

* Executive functions can be isolated from functional coding

* Eases the program fault detection and code replacement problems in a

fault-tolerant environment.

Desirable features that each application module (AM) should have are:

* Meaningful functional responsibility

* Execution time consistent with executive constraints

* Minimal argument transfer requirements

Figures 3-42 and 3-43 illustrate two methods for linking programs which have

been modularized. In the structure of Figure 3-42, the burden of providing

self linking falls upon the applications programmer (including providing

paths to redundant AM's not shown). In Figure 3-43, an executive (or scheduler)

program provides the module linking. Note that a larger number of redundant

copies may be kept of certain AM's than others when they are more critical.

The structures of both Figure 3-42 and Figure 3-43 will now be discussed

in more detail.

A straightforward approach to the sequential program organization having

a fixed structure has been illustrated in Figure 3-42 where the sequence are

operations is controlled by pre-programmed mode switches and logical tests.

The flow is continuous in the sense that the execution of a given path pro-

ceeds automatically from one stage to the next one without interruptions or

external actions. Due to the sequential nature of the program flow, multi-

ple exit and re-entry points are required to provide capabilities for program

or parameter changes. Also, the interconnected structure of this type of

program may complicate the switching of redundant units (during reconfigura-

tions) if paged memory units are required to store the entire program.

Since there is a high risk of failure of the entire program cycle due to a

single fault, a relatively large number of hardware diagnostics and checks

will be required.

In the typical modular program structure with an executive (Figure 3-43)

however, each program module is isolated from the rest and can be entered

only through the executive. After a module is completed, program execution

212

A A

2 o ' " • o"

D D

Figure 3-42 Self-Linked Modular Program Organization

EXECUTIVE

Figure 3-43 Modular Program Organization with Executive

is transferred back to the executive by either a software instruction or

the hardware. The executive includes diagnostics and tests for verifica-

tion that the system is operating properly before program execution
is

attempted. Also, it contains the scheduling software to direct program

execution to the modules required by each mode with the appropriate fre-

quency and sequencing. Scheduling can be accomplished simply and reliably

by means of task tables, in which case a mode is defined
by its task table

(or job control module).

Each task table contains the addresses of the program modules to be
executed

and data determining the respective frequencies of execution and sequencing.

Program modifications can be made very easily by changing parameters in

the task tables. Failure of a program module will not necessarily cause

failure of the entire program. Another important feature of this approach

is the simplification attainable in the process of recovery from system

failures due to the fact that only the executive is required to determine

whether the machine is operational. A modular program structure with an

executive and hardware reset is preferred because of the following

reasons:

* Reliability

- Memory reliability is improved, since partial failures can be by-

passed by changes in the task tables. Replacement modules can be

stored in other memory locations or other memory units.

- Program module redundancy can be selective, i.e., there may be

modules that need not be redundant, while others may need to be

replicated more than by the number of available memory units.

* Program Development

- Entire programs are laid out in a systematic manner and internal

interfaces are well-defined.

- Checkout and program validation is facilitated because basic

functions can be "debugged" without requiring use of the entire

program.

- Work can be conveniently divided among several programmers, not all

of whom are required to understand the entire program.

214

- Software for hardware interfaces may be developed by hardware

specialists.

- Executive functions can be isolated from functional coding.

- Changes are readily facilitated since often it is only necessary

to modify small portions of the program that do not themselves

interface with the remainder of the program.

- Internal interfaces can easily be maintained.

- A high degree of management visibility is provided since documenta-

tion is relatively simple, straight-forward and readily understood.

Program capabilities are readily determined.

o Program Simplicity

- Simplicity is greater because mode switching is reduced to a minimum,

exit and re-entry points for program changes are eliminated, and

tests required to monitor the program execution sequence are simpli-

fied and are more systematic.

- The number of modes (task tables) to be permanently stored in memory

is small since these must be only the ones required during periods

of critical or prolonged autonomous operation (e.g., cruise, maneu-

ver, encounter, backup, and initialization). However, the system

can be made to operate in any number of modes without increase in

program complexity by simply changing task tables by command.

o Operational Safety

- The probability that a single failure may cause a system down con-

dition can be minimized by forcing an unconditional return to the

executive after completion of each program module. This allows the

executive to perform tests to verify whether the machine is in

operational condition before proceeding with the execution of the

next program module. If a failure is detected, immediate action

can be taken to bring the machine back up. If a program module

fails, execution will be repeated and, if required, additional re-

configurations can be made until this module (or a redundant one)

is successfully run. This minimizes the probability of recurrent

faults.
215

- The risk of accidental mode changes due to faults is reduced by

operating with a minimum number of modes (task tables) in memory.

* Sensitivity to Faults

- Effects of a fault can be limited to total failure of a single pro-

gram module run. This would no longer imply a complete program

execution failure.

- Execution of a given module can be repeated easily until a success-

ful run is obtained.

- Diagnostic tests performed by the executive on a regular basis mini-

mize the sensitivity to faults since corrective action can be taken

before entry to the scheduling routine is made.

* In-Flight Reprogramming and Parameter Changes

- Reprogramming can be done very simply by ground command, since it

only requires inputs of additional modules and/or new task tables.

* Diagnostic Overhead

- Overhead can .be minimized because a hierarchy of diagnostics can be

easily established.

- The executive includes only the diagnostics required to verify the

correct operation of essential system units.

- Special purpose tests required during program execution (e.g.,

peripheral device tests and verification of certain I/O functions)

can be stored either as separate program modules or as parts of the

program modules where they are needed, depending on the duty cycle.

- Housekeeping and preventive maintenance tests can be scheduled by the

executive on a priority basis.

- More detailed diagnostics and off-line tests of failed units can

be performed under ground control by means of special operation

modes (required task tables input by ground command).

* Recovery

- The speed of recovery from failures can be improved by the diagnostic

capabilities of the executive, if reconfigurations can be performed

in response to software instructions.

216

- Hardware-controlled return of program execution to the executive

provides an automatic roll-back capability and simplifies and speeds

the recovery process.

- Executive diagnostics minimize reconfiguration of equipment not

essential for restoring software control of the system (e.g., I/0

equipment, memory units not containing the executive and peripherals,

can be switched by executive request.)

3.5.3 Executive Tradeoffs

In a fault-tolerant processorthe executive is the software responsible

for top-level diagnostic and recovery functions and for program module

sequencing and control. In addition to providing capabilities to change

modes of operation, the executive handles interfaces between program modules,

updates system state and equipment status information, schedules high

priority functions, and controls in-flight program changes.

Real time digital processor operation with a modular program organization

will consist of a sequence of minor and major cycles (see Figure 3-44).

Each minor cycle is a machine run beginning with a series of executive

diagnostics, proceeding with the execution of the corresponding program

module(s), and concluding with the performance of software tests (for

determining whether the run was successful or not) and a hardware return

to the executive. A major cycle is the sequence of minor cycles to be

periodically executed in each mode.

A breakdown of the operation into minor and major cycles has the following

advantages:

o Failure of a minor cycle will not cause failure of the entire major

cycle.

o Rollback to the program module that failed can be implemented easily.

o A hierarchy of diagnostics can be established with minimum overhead.

Essential system tests are conducted by the executive at the beginning

of each minor cycle. Performance tests are made at the end of each

program module. Other diagnostics and tests not required on a periodic

basis can be included in a specific program module which is executed

as part of a major cycle only when it is required.

217

Major Cycle

Minor Cycle

;tart 0 i N-1 N

Initializati n,

Reset

Figure 3-44 Flow Graph Showing Real-Time

Digital Processor Ooerations Breakdown

with Minor and Major Cycles

218

The execution of a program (organized in major and minor cycles) can be

made in many alternative ways, depending on whether its cycles are of equal

duration or not, and on whether major cycles consist of variable or fixed

sequences of minor cycles. In this Section, the following approaches to

program execution are considered and compared.

o Asynchronous

o Synchronous

o Hybrid

o Synchronous with asynchronous overlay

A modified version of the synchronous executive with asynchronous overlay

is preferred because it has most of the advantages provided by the syn-

chronous type of execution while retaining the flexibility and fault-

tolerant features of asynchronous operation.

3.5.3.1 Asynchronous Executive

Figure 3-45 shows an example of asynchronous program execution where the

sequence of tasks (minor cycles) can change on a priority basis. Minor

cycle durations may also be variable. The asynchronous executive provides

a very high degree of flexibility since diagnostics and reconfigurations

can be performed without time constraints whenever they are needed. Jobs

that fail may be repeated until they are successfully completed. Asyn-

chronous execution leads in general to highly efficient utilization of a

processor, but suffers from the following disadvantages:

o Complexity of the executive due to priority structure and timing

constraints.

o Complexity of program debug and checkout procedures due to large

number of system states

o Unpredictability of future system state

219

Priority Job 2 Idle Repeat
Job 1 Job Job K Job K+1

Start 0

Reset

Figure 345, Asynchronous Program Execution - Minor Cycle Durations
and Number of Minor Cycles Per Major Cycle May be Variable.

3.5.3.2 Synchronous'Executive

In a synchronous executive, each minor cycle has a specific job assign-

ment and the same duration. Major cycles consist of the same number of

minor cycles and no sequence changes are allowed. As shown in Figure 3-46

optional jobs can be performed only during those minor cycles specifically

reserved for external assignment (ground command or on-board priority

scheduler).

Job 2
Job 1 (Optional) Job 3 Job M-l Job M

Start 0 2 3 4 R-1 N

Reset

Fiqure 3-46.Synchronous Program Execution - Number of Minor Cycles and
Job Assignments Within Major Cycle are Always the Same - No
Sequence Changes Allowed

220

Synchronous execution has the following advantages:

o Program simplicity and reliability. There are neither priority prob-

lems nor timing constraints to worry about during program execution.

o Debugging and checkout are simple because the sequence of operation

is almost always the same and events occur in an orderly manner. Tests

can be performed without affecting the normal sequence of operations.

o Real time operations are facilitated because future system states are

predictable.

One of the main disadvantages of a synchronous executive is its relative

inflexibility. The efficiency is lower because a number of minor cycles

must be reserved for diagnostics and external demand jobs. A strictly

synchronous program execution is not compatible with a machine where minor

cycle failures are allowed, for repetition of failed cycles is not allowed.

3.5.3.3 Hybrid Executive

There are many ways in which a hybrid executive can be implemented. Figure

3-47 is an example where every other minor cycle is reserved for synchronous

operations. Synchronous tasks are assigned and scheduled as in a synchronous

executive. Asynchronous functions are interleaved'with the synchronous

ones and are scheduled on a priority basis, The hybrid executive includes

an asynchronous scheduling routine which is simpler than the one required

in a purely asynchronous executive because only a fraction of the system

functions are managed on a demand or priority basis. This approach pro-

vides greater flexibility (at the expense of a greater program complexity),

but still the problem of compatibility with a fallible machine is not com-

pletely solved. Minor cycles may fail more than once and, consequently,

there may be instances where the buffering provided by asynchronous cycles

is not sufficient.- Hybrid execution has the advantage of providing im-

proved debugging and checkout capabilities (with respect to the pure syn-

chronous case) because auxiliary routines for debugging and checkout may be

run without affecting the sequence of synchronous functions. Naturally,

the utilization efficiency cannot be as high as with a purely asynchronous

executive unless asynchronous cycles can be used for detailed diagnostics

and preventative maintenance when there is no demand for higher priority

functions. 221221

Synch Asynch Synch Synch AsynchN
O) o 1- C __ *~,0 ,C , C

Start

Relet

Figure 3-47 Hybrid Program Execution - Constant Number of Minor Cycles
per Major Cycle - Every Other Minor Cycle Reserved for
Synchronous Functions - Asynchronous Functions are Performed
on a Priority Basis During Asynchronous Cycles.

3.5.3.4 Synchronous Executive with Asynchronous Overlay

As shown in Figure 3-48, each minor cycle is assigned specific synchronous

functions and, also, asynchronous operations. Asynchronous assignments

are made by a scheduler routine on the basis of priority and availability

of time within each cycle. In some cases, this executive can be more flex-

ible and efficient than a hybrid, but, its compatibility with a fallible

machine is not so good since failure of a minor cycle cannot be corrected

without affecting the sequence of operations. However, as will be dis-

cussed later, the loss of one minor cycle time during recovery from a

fault can be tolerated (counters can be reset or masked). Except for these

potential differences i-n efficiency and compatibility, the main advantages

and disadvantages of the synchronous executive with asynchronous overlay

are similar to those of the hybrid executive.

222

= =2

StartA S a

Reset

Figure 3-48 Synch Execution With Asynch Overlay - The Organization is
Synchronous with Fixed Number of Minor Cycles - Asynch
Functions are Performed within Each Minor Cycle After Synch
Tasks are Completed

3.5.3.5 Relaxation of Synchronism Requirements

Synchronous execution is a desirable feature for real time operation be-

cause of the high predictability attainable of the times of occurrence of

processor-controlled events. However, from the fault tolerance and re-

covery viewpoints, synchronism is not necessary unless the real time sys-

tem is based on the simultaneous operation of two or more processors.

In a single processor environment, preservation of the order in which

operations take place is probably more important than providing synchron-

ism.. If the timings of discrete events are delayed by a few tenths or

hundredths of a second because a minor cycle failed and the machine was

reconfigured, the consequences are insignificant, but the operational

reliability provided by a sequence of operations where jobs are not aborted

but retried until successfully completed and priority conflicts in the de-

mand of resources are eliminated, is a highly important feature.

Relaxation of synchronism requirements implies the repetition of

failed cycles is allowed in any one of the preceding executive alternatives.

223

The synchronous executive would provide an invariable sequence but the

numbers of minor cycles per major cycle might not be always the same.

Hybrid executives would provide a higher degree of real-time predictability

because the buffering provided by interleaved asynchronous cycles would be

sufficient for recovery from most synchronous cycle failures. The syn-

chronous executive with asynchronous overlay would provide a uniform

sequence with the degree of single failure buffering dependent on the time

allocations for asynchronous jobs (relative to synchronous ones) and the

effects of failures.

To differentiate between strictly synchronous executives and those in

which synchronism constraints are relaxed for providing-tolerance against

minor cycle failures, the following designations will be used

Synchronous executive Isosequential executive

Synchronous executive + Isosequential executive
with asynchronous overlay with asynchronous overlay

3.5.3.6 Selection of Approach

The isosequential executive with asynchronous overlay is preferred to the

other approaches considered because of the following reasons:

* Except when certain faults produce complete failure of a minor cycle,

real time operation will be synchronous, with all the consequent

advantages.

* Asynchronous overlays within the minor cycles allow accommodating

synchronous jobs of different lengths with low overhead penalties.

* Programmers are relieved from the burden of fitting programs into

given fixed-time intervals.

* Most failures in synchronous jobs can be handled during the asynchro-

nous parts of the corresponding cycles without loss of synchronism.

* Loss of synchronism, in the event of repeated reconfigurations and re-

tries, may cause small delays in the timing of discrete events but

will not compromise or degrade the fault tolerance and recovery capa-

bilities of the system.

224

3.5.4 Reference Software Configuration

The executive software plays key roles during normal operations as well

as during failure recovery. A representative configuration has been de-

signed to show functions, important features, and design tradeoffs peculiar

to an isosequential executive with asynchronous overlay. This reference

software configuration consists of the following programs:

o Executive (EXEC)

The executive performs top level failure detection functions, controls

the primary phases of the bootstrapped recovery sequence (see Section

3.7), manages mode switching, updates status and roll back data,

processes reprogramming functions,. controls the timing of discrete
events and schedules applications and asynchronous program modules

for execution.

o Applications Modules (AM)

The applications.modules are the basic functional software elements

required to perform all the required subsystem functions, which in-

clude control laws, maneuver programming, sensor data processing and

conditioning, actuator control, command processing, and telemetry data

acquisition and processing. Also, AM's may be included to perform

diagnostic, failure detection, or housekeeping functions of a more

specialized nature than those of the executive, but which require

specific sequencing in order to prevent interference with normal

operations (e.g. diagnostic tests of failed units).

o Asynchronous Modules (ASM)

Asynchronous modules are the software elements that process off-line

and major cycle jobs not involving either time or sequencing con-

straints. Functions performed by the ASM's include program verifica-

tion and debugging (pre-launch operations), background data processing,

routine system performance, monitoring, diagnostic tests, detailed

failure detection routines, diagnostic command and telemetry inter-

faces and failed-job retry routines.

EXEC is entered periodically every minor cycle, by an unconditional inter-

rupt (program synchronization signal) controlled by the RCU. In addition,

225

entry to EXEC can be through software jump instructions when either schedul-

ing or other EXEC functions are required within a minor cycle (e.g. minor

cycles including several AM's or during ASM execution). The basic elements

included in EXEC are:

* Executive Bootstrap Routine (EBR)

EBR is responsible for the primary failure detection and recovery

functions within the processor. Its first action consists in exercis-

ing key functions of the ACU and transmitting results of the tests to

the RCU through a coded word. If the RCU receives this word within

a predetermined interval (from the occurrence of the interrupt synch-

ronization signal) and the coding represents an admissible state,

operations are allowed to proceed. Otherwide, the RCU reconfigures

ACU's, ROM's and DBS's (the primary processor) until a correct word

is received on time. RCU performance is monitored by the HCU.

Other functions performed by EBR include checkup and (if necessary)

reconfiguration of other processor units, verification of EXEC per-

formance, and fault signal acknowledgement.

* Control Executive Routine (CER)

The CER checks operating memory units, verifies AM scheduler perform-

ance and checks ASM scheduling functions and status. In addition, CER

updates rollback data, manages mode changes and reprogramming, and

controls discrete event timing.

* Application Module Scheduler (AMS)

AMS determines the sequence of AM's to be executed in each mode. When

executive transfer is initiated by fault signals, AMS selects the

rollback point as the next job pointer. This ensures retry of a job

that failed.

* Asynchronous Task Scheduler (ATS)

The ATS is entered at the end of the isosequential operations of each

minor cycle for scheduling asynchronous jobs on a priority basis.

Either ASM's or AM's may be scheduled by ATS for execution. The latter

can be for either retry or diagnostic purposes.

226

There are many ways in which the component routines of EXEC can be im-

plemented. Figure.3-49 shows the organization of an example configuration

comprising the following subroutines:

o Primary Bootstrap Subroutine (PBS)

PBS is entered automatically after each program synchronization inter-

rupt. If the system is designed to operate with either hardware or

software fault interrupts, then the first step necessary is to momen-

tarily disable further interrupts, since modification of tables by

the executive must be completed once it has begun. In all cases, any

signals used to enable writing on PWM's must be unconditionally reset

to prevent accidental destruction of PWM contents (e.g. in the event

that the subroutine for writing on PWM either failed to disable the

permissive logic or was interrupted by a fault signal). Next, the

process of quorum of primary processor elements (i.e. ACU, ROM, DBS)

begins. Under supervision by the HCU and RCU, a sample problem is ex-

ecuted by PBS for exercising essential arithmetic, logic and control

functions by the primary elements. The outcomes of the sample problem

are the assembly and transfer to the RCU of a coded word or password

within a given window. If a correct word is received by the RCU be-

fore the window falls,the test is successful and operations are allowed

to proceed. Otherwise, reconfiguration takes place by switching units,

one at a time, under RCU control. Using a quorum of primary elements,

instead of the complete system, as the basis for reconfiguration

allows substantial simplifications in the RCU and HCU, enhances opera-

tional reliability, and accelerates system recovery.

o Secondary Bootstrap Subroutine (SBS)

Given that the primary processor elements operate properly, a more

complete bootstrap test and recovery process can now be performed

with a minimum of trial-and-error substitution. The SBS checks the

functional status and integrity of the rest of the system, including

PWM, RAM, IOU, PDB, and necessary peripherals (i.e. sensors and actua-

tors). The first element tested is the IOU because it is needed for

reconfiguring the other units. If the IOU is found defective, SBS

requests reconfiguration to the RCU through a TRC instruction.

227

EBR CER AMS ATS

PRIMARY MEMORY PRI ORIT Y

BOOTSTRAP CHECKING APPLICATION SEQUENCER
MODULE EVEN WAIT

SCHEDULER R

SUSPENSION
SECONDARY AMS HANDLER

BOOTSTRAP VERIFICATION
TO CYCLE

CER CHECK ATS BOOTSTRAP

AMI AM2 ASM1 ASM: N

EXEC TRACER CONTROL

AM1 AM2 * ASMI * * * ASMN

FAULT SIGNAL PWM WRITE
VERIFICATION

Figure 3-49 Reference Software Organization

0 CER Check Subroutine (CCS)

CCS performs instruction checks which may vary from a simple sum-

check to a detailed audit (instruction-by-instruction comparison

of redundant CER's). Functional testing of CER is difficult to per-

form without risk to data integrity or compromising system safety

and recovery reliability. For this reason, CCS is used as a substi-

tute, in conjunction with ETS (described below) and other indirect

means of verification (e.g. results of AMS and ATS tests).

o EXEC Tracer Subroutine (ETS)

This is a subroutine which verifies that the EXEC did not loop on it-

self during execution of the last minor cycle. ETS uses two tables,

the EXEC Sequence Table and the EXEC Tracer Table, for diagnostic

purposes. In the event of detection of EXEC looping, a fault signal

(with appropriate flags) is issued to initiate reconfiguration.

o Fault Signal Verification Subroutine (FVS)

Determination of the authenticity of fault signals is an important

function in fault-tolerant systems. Fault signals that give erroneous

information may cause serious problems during recovery, and in fact

may cause an otherwise functioning system to lose its ability to per-

form its required operational tasks. (Hence, it is in the interests

of reliability to reduce the number of fault signals to a necessary

minimum).

Disabling the fault signal and acknowledgement that it is functioning

correctly should be accomplished under program control.

Prior to transferring to the EXEC, determination of the interrupting

source is made, and if the source is a fault signal, masking (disabling)

of the next program synchronization interrupt is performed (so that

recovery processing by EXEC is permitted to be completed before being

interrupted).

o Memory Checking Subroutine (MCS)

The bootstrap procedure consists of a sequence of memory tests. -EBR

checks the memories required for correct operation of CER and MCS does

a similar thing with the memories used for AMS and ATS functions.

229

These checks may be in the form of of sum checks, parity checks, audits,

or any combination of techniques.

* AMS Verification Subroutine (AVS)

AVS performs a functional verification of AMS performance to determine

whether scheduling operations take place as specified by the corre-

sponding task table. A log of completed jobs is kept in the Job

Executed Table (JET). The contents of JET are compared to the sequence

defined by the main Job Control Table (JCT) for agreement. If disagree-

ment occurs, a software fault is indicated. The AVS can be scheduled

optionally every minor cycle, at completion of each major cycle, or as

often as desired.

* ATS Bootstrapping Test Subroutine (ABS)

ATS can be tested by either functionally exercising it and checking

the response obtained, or by monitoring the past history of ATS opera-

tion against some predetermined performance criteria based on an

entry/exit flagging scheme for tracing scheduling sequences. The first-

mentioned approach is too time consuming if applied for direct in-line

checking, and the second one has the disadvantage of requiring per-

formance criteria that are very difficult to define. A compromise pro-

viding an efficient and reliable way to test ATS consists in exercising

priority scheduling functions by means of a bootstrapping subroutine

and a set of dummy ASM's. ABS generates job requests (with various

priorities) to be serviced by the dummy modules and monitors results

obtained. Dummy ASM's require very little execution time and may be

used to perform routine functions if desired.

* Control Subroutine (CS)

CS performs top-level management functions, including mode changes

and reprogramming, -updates roll-back data, and controls discrete

event timing. Most of the CS functions are performed in conjunction

with the PWM write subroutine described below.

Mode changes are executed at the completion of a major cycle by

changing the JCT in AMS. The new JCT is retrieved from ROM or, if

input by command, from PWM. A copy is placed in a specified location in

230

RAM and is subject to parity and sum check verifications prior to
transfer to PWM.

Every minor cycle, CS begins the process of assembly of the roll-back
data necessary for software recovery. These data are transferred to
a specified block in RAM and parity and sum check verifications are
made prior to transfer to PWM. Before RAM-to-RAM data transfers are

made, checks are performed to verify that the initial and data block
address codes correspond. Reprogramming is handled by similar tech-

niques since it involves writing on specified blocks of PWM.

Discrete event timing is made directly by the CS through the IOU.

The resolution is determined by the minor cycle time interval. Speci-

fied bi-levels are turned on when the corresponding timing counts
elapse. Flags are set for bi-level turn-off in the following cycles.

This function is assigned to the CER because it requires updating
counts in PWM every minor cycle.

o PWM Write Subroutine (PWS)

This subroutine is intended to protect the system from indiscriminate

overwriting of data in PWM that may be necessary for mission success.

Several sequential checks must be passed before permission to write

into PWM is granted, and if any fail, a fault interrupt is issued,

forcing the system into EBR for fault isolation and reconfiguration
processing, if necessary.

First,.a check is made to see if there was indeed an AM request to

write in PWM in the last minor cycle. If so, verification that the

PWM write enable (WE) is "off" is made. If WE is "off" as it should
be, a request is made to the IOU to issue a WE bi-level. Next, a

check is made to see that the WE signal is issued by the IOU, a step

necessary to ensure that critical data are not lost accidentally.

Next, subtractions of addresses (first and last addresses) are per-

formed to determine the sizes of the data blocks. A check of each

block size, against a previously stored number, reveals if this size

is correct (to prevent an incorrect address permiting the overwriting

of part or all of the protected data).

231

As a backup check, the data are coded so that only data in certain

locations is permitted to write under PWS control as derived from

the CS. Only if the original code corresponds to the code of the data

assembled in RAM is writing permitted. If all these conditions are

met, data transfer between RAM and PWM takes place.

After writing, a check is made to see if the PWM and RAM data are

identical (verifying that the write operation was successful). If so,

the WE must be disabled in order to protect PWM data. Furthermore,

a check of the disabling operation is required to verify that this

has been accomplished (the IOU may have been requested to disable the

WE and failed to respond). If all these tests are successful, exit

from the PWS subroutine occurs.

Application Module Scheduler (AMS)

The main function of the scheduler, in a given system mode, is to

select a sequence of AM's from information contained in the JCT for

that mode. For typical minor cycles where executive transfer is

initiated by a cycle-timer interrupt, the selection is based upon the

past minor cycle sequence and major cycle index. Information useful

for this scheduling is found in the JET.

When executive transfer is initiated by fault signals, however, the

scheduler selects the rollback point as the next past job pointer.

This ensures retry of a job that faulted (or execution of the AM

succeeding the last one completed when the fault is not due to an AM

execution failure). Transfer from AMS is made directly to the selected

AM.

Priority Sequencer (PS)

Transfer is made to ATS at the end of synchronous task calculation for

scheduling of asynchronous jobs on a priority basis. During this

asynchronous time both ASM's and AM's may be scheduled by ATS, the

latter for functional test purposes. PS processing begins by checking

mailbox locations for I/O event reports and command messages. If an

event report is present, transfer is made to the suspension handler

(described below), while if no event is present, transfer is made to

232

CYCLE (a PS entry point). A command message is handled by putting a

high (est) entry on the priority table and transferring to CYCLE.

CYCLE is the scheduling part of PS, where the highest priority job in

the ATS job table is selected for execution, table priority entries

are modified, the state vector for that job is loaded, and transfer

from ATS is made to the corresponding AM or ASM. Return to ATS is

made via a WAITFOR request or an END message.

o Suspension Handler (SH)

This subroutine has two entry points: EVENT and WAITFOR.

When an I/O event occurs, the subroutine executes EVENT, by which the

appropriate entry in the wait-for-pending table is removed (if it is

there, otherwise there is either an error or a command-type message

has arrived and the job is placed with high(est) priority in the job

table. Transfer is made to CYCLE in PS.

If a job is suspended, a WAITFOR message is issued, the I/O event in

question is marked in the wait-for-pending table and the job is put

into a suspended status in the job table. Transfer is made to CYCLE

in PS.

Typical processing sequences with the multi-programmed, real-time

reference software system described above are shown in Figure3-50

where minor cycles are the time periods between cycle timer interrupts

(CTI). Processing during each minor cycle interval is divided between

the executive, the regular AM sequence, and the priority-scheduled ASM

portions as shown in Figure 3-50 a). The executive is entered after

every CTI for reasons of fault tolerance, since reliable failure de-

tection and recovery can be achieved when periodic checks are caused

by a dependable interrupting source, i.e. the RCU with HCU supervision.

Isosequential processing of the AM's enhances fault tolerance and

recovery reliability because the execution of on-line functions is

predictable and well defined and performance verification is greatly

facilitated. Asynchronous processing of ASM's facilitates programming

by easing time constraints and contributes to obtaining a higher

operational efficiency.

233

CTI

EBR CER AMS AMi AMS AM2 AMS AM5 AMS

tTI
ATS ASM7 ATS ASM9 ATS ASM 10 EBR I CER AMS AMI 7

AM1 AMS AM3 AMS AM6 AMS ATS ASM10

CTI

ASM 10 ATS ASM5 EBR ICER IAMS AM1 AMS AM2

a) Without faults

CTI FI FI FI

EBR EBR EBR EBR CER AMS AMI AMS I AM2

s CTI

AM2 AMS AM5 AM I AMS ATS ASM7 JATS ASM9 EBR CER AMS AM1

S

AMI AMS AM3 AMS AM6 AMS ATS ASM 2

ASM9 ATS ASM10 fEBR CER AMS) AMI AMS AM2

b) EBR failures detected by RCU - 3 reconfiguratlons

CTI

EBR CER I AMS I AMI AMS AM2

CTI

I EB I CER /11 CER JAMS ;

S AM- AMS AM2 AMS AM5 AMS ATS ASM7

CTI

ASM71 ATS AS,49 EBR CER AMS AM1 AMS AM3

c) Failure detected by ECR

OIGIAL PAGE S
Figure 3-50 Typical Processing Sequences of the P POOR q

Reference Software Configuration

234

A key feature of the reference software concept is the high degree of

flexibility attained, as demonstrated by the following properties:

o The relative period of AM and ASM time (in each minor cycle) may be

determined by the programmer according to application and mode.

o The executive processing interval is optional and can be chosen to be

- short enough to keep overhead within desired bounds

- long enough to ensure satisfaction of fault tolerance requirements

(reducing fault propagation, reducing recovery time, etc.)

o The minor cycle interval can be chosen to be

- consistent with fault tolerance requirements (short enough to

interrupt a looping job in the time required)

- compatible with AM processing (long enough to minimize segmentation

or "chopping-up" of AM's).

o If desired,'minor cycles can be scheduled to include AM's only or,

alternatively, AM's and ASM's can be alternately scheduled after

synchronization interrupts. The designer has freedom to choose the

best approach for each mission regime.

Figure 3-50 b) shows an example case where a fault occurring before CTI

causes a failure of EBR to transfer a status word to the RCU within the

window period. When the RCU window falls the reconfiguration logic is

activated, one of the primary processor units is reconfigured and, after

reconfiguration, a reset interrupt (RI) is issued by the RCU to start

execution with EBR. In the example, three consecutive failures are assumed.

After the third reconfiguration, processor operation is resumed. The AM's

scheduled for this minor cycle are executed with a small delay but the

proper sequence is observed. The ASM execution sequence changes because

ASM9 cannot be completed as in a) and ASM10O is obviously deferred to the

next minor cycle.

The example shown in Figure 3-50 c) illustrates the case where a RAM memory

failure causes an endless loop during execution of AM2. The loop con-

tinues until CTI starts an executive run. ESR tests are passed and CER

discovers a RAM failure. The IOU is commanded to reconfigure RAM's and

235

execution begins when ACU operation is halted by a DLY instruction. The

IOU reactivates the ACU by means of an ADV signal when reconfiguration is

completed, and a software jump to the CER entry point causes a new series

of tests. After passing the CER tests, AMS execution starts. Since there

are no indications that the AM sequence was completed, AM's 1, 2, and 5 are

scheduled for execution. These jobs are done with one minor cycle period

delay but the sequence is not changed. If roll-back data placed by AM1 in

RAM had been preserved, execution after recovery would have started with

AM2. Repetition of the failed minor cycle sequence is made possible by the

JCT and JET stored in PWM.

Validation of an executive program as discussed here requires further

definition of routine and subroutine functions and a detailed failure mode,

effects, and criticality analysis (FMECA). The multistage bootstrapping

technique on which this program is based appears to offer a promising and

foolproof means of ensuring that recovery is possible regardless of program

failures (especially the difficult ones to diagnose, e.g., those which do

not generate fault signals but may cause looping in one program, incorrect

jumping to another program and/or incorrect data generation). Increasing

the number of diagnostics and fault signals with the intent of aiding diag-

nosis by reducing the possibility of unsignaled faults may only complicate

the problem; extra options may cause ambiguities which are difficult to

resolve during recovery and the fault signals themselves may fail, greatly

increasing the burden on system recovery procedures.

3.5.5 Diagnostics and Fault Detection

Diagnostic and fault detection alternatives and tradeoffs are covered in

general in Section 3.7 and hardware diagnostic techniques are discussed

in detail in Section 3.6.2. The object of this Section is to categorize

and discuss briefly the various software diagnostic techniques applicable

at the system and lower -levels.

As is the case with the operational software, software diagnostics can fail

and, consequently, bootstrapping techniques and hardware monitoring are

necessary for adequate validation.

Software diagnostics are particularly attractive for multipurpose, fault-
tolerant systems because of their flexibility and compatibility with

-236

function and equipment options. The hardware monitors are the only elements

that should remain invariant in a truly multi-mission system.

The organization of software diagnostics is normally influenced by the

recovery management structure adopted for the system, since one of the key

objectives of failure detection is to localize failures at the replacement

level.

System failure detection can be performed either in line or off line. The

organization can be either centralized or distributed (e.g., bootstrapped).

Failure concealment can be prevented by means of redundancy, reliance on

propagation, or failure detector monitoring. Most frequently used (or

proposed) techniques for system function validation include:

o Performance Monitoring

This is an off-line function that can range from simple checks of the

outputs of identical or functionally redundant sensors to highly

sophisticated estimation techniques. An approach that is very effec-

tive and simple to implement consists in monitoring the total space-

craft momentum. Momentum inputs caused by thruster firings and dis-

turbance torques are estimated and spacecraft rates derived from

sensor readings are compared to values predicted from momentum wheel

speed measurements.

o Reasonableness Checks

These are in-line checks of system operation against pre-stored limits

or tolerances or calculated regions of normal or expected behavior.

Typical variables monitored are frequencies of pulses, durations of

pulses, rates of change and limits of sensor outputs, etc.

o Parallel Operations

Sensors and/or control laws are operated in parallel to check for

agreement. An alternate approach consists in switching to redundant

elements and repeating the operations performed by the original con-

figuration. If the two results agree the operation is assumed correct.

o Responses to Stimuli

This is a test where the response produced by a known input is compared

to a known result. This approach is very effective for revealing

237

whether an unflexed response is due to absence of commands (or inputs)

or to system failures. Diagnostics are typical elements with unflexed

outputs requiring external stimuli for performance verification (i.e.,

simulated fault conditions or signals).

Detection of failures in memories is difficult because there are mechanisms

likely to produce multiple failures. In addition, LSI components are more

prone to exhibit burst-type failures than discrete elements. The following

are some of the most commonly used approaches for memory failure detection:

* Coding/Parity Checks

Coding or parity checking are effective when the fault patterns of the

system to be validated are predictable. This allows designing the

tests for detecting the majority of possible errors.

Coding or parity check techniques are very effective when combined

with other methods of failure detection (e.g., sum checks) or failure

prevention (e.g., hardware techniques to prevent failure patterns not

detectable by the code).

* Check Sums

The sum of a group of instructions or data words in a memory block

plus a code-word stored somewhere else should be zero for the check

sum test to be successful. This is a very simple and effective error

detection scheme but it fails to reveal multiple errors of the 0-

mod 2n variety (e.g., two errors in the 14th-bit position).

* Sample Problems

Using a combination of system components, problems with given inputs

can be run and the answers compared against known results. It should

be realized that checking a program in this manner will not necessarily

exercise each program branch since branching is generally data depen-

dent. Thus, errors that occur in certain branches will not be detected

by a test problem that does not exercise the defective branch. The

entire system or only a part of the system (e.g., ACU adders and

registers) can be tested in this way.

238

o Duplex Operation

This approach consists in straightforward, in-line, parallel memory

operation with coincidence checking. When high speed computations

are required, coincidence verification is done by hardware. Software

implementation of duplex operation can be used for data handling at

slower rates than in a duplex mode.

o Auditing

Auditing is an off-line word-by-word verification of the contents

of a working memory by comparison to identical information stored in

either a redundant ROM or a bulk memory unit.

Arithmetic control units may be checked by either running sample problems,

as described for memory units, or performing a series of multiply, jump,

and indexing instructions with which virtually all portions of the ACU can

be tested.

Input/Output units can be checked by means of one or more of the following

techniques:

o Bootstrapping Checks

Facilities are provided in the IOU's or peripheral units for storing

test data. Bootstrapping tests ,typically consist in the transmittal

of numbers stored in ROM to a remote storage register and the retrieval

of these data for coincidence checking.

o Echo Checks

These tests are also bootstrapping techniques except that different

channels or data links are used for in-bound and out-bound data trans-

mission. A typical example of echo check is the method used in the

COPE processor for testing bi-levels. The bi-level logic can be

checked by turning a dummy bi-level on by means of an SBL instruction

and then checking the status of this bi-level by means of an SKE

command. If the bi-level is high, an echo signal is returned by the

IOU on a separate response line and the ACU executes the next instruc-

tion. Otherwise, this instruction is skipped.

239

* Responses to Stimuli

These tests are as described for the system, except that input signals

should be chosen to enhance the sensitivity of the responses to input/

output errors.

* Test Signals from Peripherals

Inbound communications are tested by means of known signals generated

by peripherals.

Failures in peripheral devices can be detected by performing parallel

operations (e.g., checking the outputs of redundant sensors), applying

known stimuli to verify the resulting responses, or by means of test modes

implemented within each peripheral unit.

Data buses are checked together with memory units by reading data from ROM

and storing and reading data from RAM's.

3.5.6 Software Sizing

Table 3-14 contains preliminary estimates of the storage and processing

requirements of the reference executive program described in the preceding

section. The procedure used to derive these data consisted of the follow-

ing steps:

1) Detailed definition of the functions to be performed by

each subroutine.

2) Implementation of the subroutines by means of a set of

generalized statements.

3) Implementation of the generalized statements by machine

language instructions.

The following is a summary of the assumptions made in the preparation of

Table 3-14:

* PBS

In addition to instructions for exercising primary machine

functions, 8 tests of internal indicators, 10 tests of external

indicators and a sum check of SBS are included.

240

TABLE 3-14 - ESTIMATED STORAGE AND PROCESSING REQUIREMENTS FOR THE REFERENCE EXECUTIVE

ROM INSTRUCTIONS/RUN
Routine SubRoutine

Prog Data Faults No Faults

PBS 60 10 - - 359 253

SBS 80 18 36 15 1768 1048

EBR CCS 16 4 4 2 420 410

ETS 8 2 2 2 84 80

FVS 45 10 10 10 160/240 120

MCS 30 4 2 2 517 505

AVS 10 2 4 20 10 8

CER ABS 30 10 5 2 74 61

CS 115 25 40 40 150/1110 150/1110

PWS 20 4 10 2 370 365

AMS - 30 4 5 5 30 30

ATS - 50 6 15 15 50 50

TOTALS 494 99 133 115 3992/5032 3080/4040

* SBS

This includes RAM and PWM checks, verification of status and tests

for up to 36 system elements, reconfiguration instructions,

and sum checks of CCS, ETS, and FVS.

* CCS

A sum check of CER and flag testing instructions are included.

* ETS

This includes instructions for checking tracer tables and

setting fault flags.

* FVS

Processing of 10 fault signals is assumed. Possible actions are:

1) problem solved, lift flag, 2) transfer to diagnostic

routine in AM, 3) place request for off-line device test, and

4) reconfigure device.

* MCS

This includes testing of S fault flags and sum checks of AMS and

ATS.

* AVS

Processing of 10 AM's per major cycle is assumed.

0. ABS

Verification of ATS is assumed on the basis of 5 dummy ASM's.

Instructions include by-passing normal sequence to enter ATS

and return to ABS for checking test results.

* CS

Lower bounds correspond to normal operating conditions without

mode changes or reprogramming inputs.. A rollback data block of

40 words is assumed. Program changes are handled in blocks of

up to 10 instructions.

* PWS

This includes instructions for testing PWM write enable/disable

logic and transferring data to PWM in blocks of 10 words each.

242

o AMS

Job control and tracing tables are included in AVS.

o ATS

Sizing is based on a maximum of 10 ASM's in the priority list.

Totals for RAM storage requirements and instructions/run are not repre-

sentative of actual conditions since memory space can be shared to a

great extent and not all subroutines must be executed every time.

243

3.6 Hardware Fault Detection

It has been seen that fault detection may be by software or hardware

techniques or a combination of both. Software fault detection and diagnos-

tics were discussed in Section 3.5.3. System performance monitoring (which

is a type of fault detection) was discussed in Section 3.5.4. The subject

of failure recovery was introduced in Section 3.5.5 and will be expanded

on under reconfiguration in Section 3.7. This current section restricts

itself to the methods of hardware fault detection in the processor and

peripherals, to fault correction or masking (if used), and to the problems

attendant in providing the system clock.

3.6.1 Error Detecting Coding

One powerful method for hardware fault detection is the use of error

detecting codes. Error detecting codes may also be expanded into error

correcting codes, but only with a penalty of at least doubling the word

length. Error correcting codes are one method of fault masking, a tech-

nique that is not deemed to be necessary in a spacecraft control system

processor, except possibly in the "hard core" portion. No further con-

sideration will be given here to error correcting codes. Their use is

more applicable to transient communications errors (which are noise in-

duced) than to the more-likely permanent faults of a processor. If

interested, error correcting codes are well covered in the literature.

Error detection is a relative operation. The overhead increases as the

degree of detection increases. Detection of single errors requires only

an extra bit (parity coding). Detection of all errors will require that

the words be completely redundant. The immediacy of error detection is

also a variable. How often in the operations the words are checked can be

suited to the speed of detection requirement for errors.

Immediate detection of all processor errors is very expensive in terms of

hardware (and software) overhead and processor speed. Fortunately, there

is no need to detect all possible errors and immediate error detection is

not needed.

Error detecting codes are codes that modify a word with extra bits in a

systematic way so that errors in some or all of the bits may be detected

by recognizing that the code is improper.

244

Error detecting codes can be applied to data words and/or instructions.

They make it possible to detect the presence of errors at each point of

detection. The generation of a code requires a hardware circuit termed a

"former" and the detection of the code requires a hardware circuit termed

a "checker". Formers and checkers add to the part count, consume power,

etc. and so should be minimized in use to reduce such hardware overhead.

Error detecting codes also add to the word length, increasing the size of

registers, memory, data buses, etc; also adding to the hardware overhead.

The codes also require more time in serial or byte-serial organized proces-

sors, providing a penalty here too.

Errors can be detected with coding to any desired degree of completeness or

immediacy, but only with increasing penalties. Note that, as one extreme,

no error detection coding is a viable alternative (and, in fact, the most

common one).

Codes with a single parity bit are often used for error dbtection in memory.

This was the technique used for error detection in RAM in COPE. The penal-

ties for such a code are very small. Parity codes can only detect single

errors or odd numbers of errors. Parity codes are not preserved through

arithmetic operations. Parity codes are also not useful for checking serial

or byte-serial paths, where the total word or the corresponding bit of each

byte may be in error.

A more desirable error detecting code would be one that could be applied to

data words (for now) and which would be preserved through arithmetic.

Prof. Avizienis and his students have extensively studied such codes with

the conclusion that product codes of the form 24-1 are particularly useful

for checking byte-serial organized processors whose byte length is 4 bits.

Such a "Modulo 15 residue coded check byte" offers distinct hardware ad-

vantages in terms of circuit minimization. This code will detect all

errors except those that are multiples of 15.

A check byte is added to each data word in the most-significant byte posi-

tion. This byte is formed so that the total word is a multiple of 15.

This is done by a process analogous to casting out 9's in decimal arithmetic.

To form the check byte, add all of the other bytes together (observing

carries), and complement the result. (bit for bit)

245

An interesting feature of this code is that it is preserved through simple

arithmetic operations, if the carries are properly observed. This is a

property fairly unique among arithmetic codes. It is not preserved through

logical operations. Arithmetic operations which preserve the code are:

* Addition and subtraction

* Multiplication and Division (with precautions)

* Left and right shifts (if over-or under-flows do not occur or are

accounted for)

* Double precision addition and subtraction (with proper precautions).

To check if any errors have occurred, add all bytes of the word (including

the check byte) together, observing carries. The result should equal

15 = 1111. If not, one or more errors have occurred.

To illustrate, consider the following examples (using 8 bit words):

* Word-A = 1111 0100 to form the check byte:

1111

+ 0100

1 0011

L-1
0100 = check byte. The total word is:

A' = 1011 1111 0100

(Note this adds up to 1111)

* Word-B = 0000 1010 Forming check byte:

0000

+1010

1010 = check byte. The total word is:

B' = 0101 0000- 1010

* Adding words A' + B' = C'

246

1011 1111 0100

+0101 0000 1010
1 0000 1111 1110

L, 1
C' = 0001 1111 1110 Checking this:

0001

1111

+ 1110

1 1110

1111 which is proper.

o If the addition resulted in an error in one bit:

fError
C' = 0001 1101 1110 , the check would give:

0001

1101

+ 1110

1 1101

1101 which is t 1111, so the error is detected.

o If the addition resulted in an error in the same bit position of each

byte: (stuck on zero)

Error

C' = 0001 - 1101 1100 , the check would give:

0001

1101

+ 1100

1 1010

L1
1011 which is 1111 , so the errors are detected.

247

Note that the overflow carry is added as a least-significant-bit (end-

around carry). Rules have also been formulated to handle the carries re-

sulting from multiplications, divisions and shifts.

We see therefore, that the check byte former can be a circuit that adds (in

byte form) the bytes of the data word, observing carries, and complements

the sum, tacking on this check byte at the end of the word.

The check byte checker is a circuit which adds (in byte form) all of the

bytes of the total word (including check byte), observing carries, and

compares the total (residue) to 1111, issuing an error signal if the com-

parison is improper. All of the word can shift on through, the checking

occurring simultaneously with the word shift.

Since the functions of forming and checking are so similar, they may be

combined in a single circuit (see Figure 3-51). This circuit can be

controlled to either form or check the check byte of 4-bit byte serial

organized words (of any length) or to neither form nor check the check byte.

It issues an error signal if the checking is improper.

This circuit requires 1 MSI (the adder) and 7 SSI parts, would consume

about 150 mw and have 225 failure bits. It could be used wherever needed

in the processor. If check bytes are used, the timing must be modified to

provide "room" for the check byte, and all registers must be expanded by

one byte in size.

If the check byte is used for error detection, where in the processor

should it be used? Its use should be minimized because of the hardware

penalties and yet it should be used at those points in the data flow most

likely to promptly show up errors.

The former should be used:

* Wherever data words initially enter the system

* Wherever the check byte needs to be reapplied to words (such as where

words have been stripped of the check byte because of logical operations).

These two requirements translate into using the former:

* Out of the IOU

* Out of the adder of the ACU

248

INCOMING / ' OUTGOING
BYTES BYTES

MSB LSB CARRY IN
CARRY OUT

MSB 4-BIT COMPLEMENT
BYTE

LSB ADDER GATING

Check Byte Former/Tester

249SB

LSB

5-BIT GATING
HOLDING
REGISTER

COMPARATOR SIGNAL

FORM CHECK BYTE CONTROL

TEST CHECK BYTE LOGIC 1 1 1

TIMING SIGNALS

Figure 3-51

Check Byte Former/Tester

249

The checker should be used:

* At the end of data transmission paths

* Following arithmetic operations

* Prior to writing into memory

* Prior to use in I/0.

These requirements indicate use of the checker:

* Into the ACU (A-register in COPE)

* Out of the adder of the ACU (Same as the former, above)

* Into the RAM or PWM

* Into the IOU.

This means that the IOU and ACU would each have two former/checkers, the

RAM and PWM would each have one, and the ROM wouldn't need any. If this

were done for a 16-bit processor (COPE), it would result in a 1.25 x time

penalty and about a 1.25 x hardware penalty. (So far, only for data words).

Next, the use of error detection coding on the instruction words should be

considered. The instruction words are made up of two portions, the opera-

tions code (op. code) and the address. The operations code is (relatively)

immediately decoded into the specific instructions. The address field may

be operated on, shifted between registers and counters, incremented, added

to other addresses, etc. in the ACU.

It is clear that these two portions of the instruction:

* must be handled separately insofar as error detecting coding is

concerned

* may not require the same methods of error detecting coding.

Whatever is done must also:

e Contain the same information in the instruction word

- No reduction in direct address field

- Retain the same number of decoded instructions

* Maintain the instruction word length equal to the data word length.

Since the address field portion of the word is arithmetically operated on,

it makes sense to add a check byte to detect errors in incoming or outgoing

(from the ACU) address field portions of instruction words. This adds

250

4 bits to the instruction word length. If a check byte was also added to

the data word, and if the data and instruction words were originally the

same length, then this uses up all available bits without providing any

error detection for the op. code., unless the data word is extended (more

accuracy?).

Op. Code error detection is probably more important than either data word

or address error detection, since an error in even one bit completely

changes the instruction executed and the subsequent processor operation,

most likely propagating the fault quickly. On the other hand, the op. code

is fetched from ROM (or PWM), where faulty words are less likely, and is

decoded relatively immediately'MIthout arithmetic operations, so that errors

are less likely.

Assuming 8 bits for the Op. Code (as in COPE), there are probably little

spare (unused) decoded states. COPE used 5 bits for 30 instructions (2

spare) and the remaining 3 bits for tags of indexing, etc.

One technique for op. code error detection coding would be the use of the

popular parity bit. This would be useful, as no arithmetic operations

occur and the bit can be easily formed and checked. Its use adds one bit,

which may not fit in well with the word length requirements. If used, the

parity bit should be checked just prior to (or as a part of) instruction

decoding. It would need to be formed at PWM write.

Another technique that is attractive would be to code the op. code separate-

ly with a multiple error detecting code. The check byte approach discussed

previously might be used, but is not particularly attractive since the op.

codes are transferred in parallel (most likely) and the checking should be

through the decoding.

A method that has been used, is the use of a 2 out of 4 (or equivalent)

code. A 2 of 4 code gives 6 permissible states (out of the 16 possible).

Only combinations having exactly two l's are recognized and decoded. All

other combinations are faulty. Note that the decoding (and error recogni-

tion) are very simple.

251

The number of acceptable codes (for total bits used) are:

* 4 total bits = 6 codes

* 8 total bits = 62 = 36 codes

e 12 total bits = 63 = 216 codes

* 16 total bits = 64 = 1296 codes.

For most processors, 216 codes should be sufficient and 12 bits could be

used for 2 of 4 op. code coding. Note that an uncoded 8 bits gives 256

possibilities, which is only slightly more. The use of 12 bits would

add 4 bits to the instruction word length for op. codes.

If error detecting coding is used on the instruction word, the "best"

approach would result in: (as applied to COPE)

* 12 bit op. code, coded as 2 of 4.

* 4 bit check byte for address field.

* 8 bit address field.

This totals 24 bits. The COPE data word length is 16 bits (20 bits for

use of check byte). To make the words the same length, the data word length

could be extended to 20 bits, providing better (but unneeded) accuracy.

This would result in a 1.5 x penalty in speed and about a 1.4 x penalty in

hardware.

As discussed in Section 3.4.1 , if the processor is a 24 bit accuracy machine,

the use of double precision instructions would be reduced to the point that

the true speed might be enhanced (since double precision takes twice as

long), even though the actual speed was reduced by the longer word length.

Considering the error detection, this could result in a total word length

of 28 bits, giving for data words:

* 4 bit check byte

* 24 bit data field

For the instruction words,this could give:

* 12 bit op. code, coded as 2 of 4

* 4 bit check byte for address field

0 12 bit address field (enabling direct addressing of 4,096 words).

252

Such a processor would have a 1.75 x penalty in speed and about 1,5 x

penalty in hardware. (Although the "real speed might be about the same.)

What do we get for these penalties? We get somewhat better and somewhat

quicker error (fault) detection than can be achieved by other means.

Whether this is necessary is a question for other sections. The conclusion

seems to be that error detecting coding is not needed (with the possible ex-

ception of the op. codes).

A remaining subject of the consideration of error detecting coding is the

need for use of such coding on data transmitted between the IOU and peri-

pherals. Note that (on COPE, at least) this data transmission is in serial

form.

If such error detection is used, then its primary purpose must be to detect

errors caused in the communication process, across the interface although

it can also detect errors in the ACU/IOU interface and in the IOU logic.

If the processor, uses error detecting coding, then the same technique can

be carried across to theperipherals. If a parity bit is used, this works

quite well across the serial interface, as parity bit forming and checking

on serial data is very simple.

If a check byte is used (in the processor) then this can be shifted out in

serial as the 4 MSB's of the serial word. The peripheral checker must in-

clude a 4-bit buffer register, besides the circuitry of Figure 3-51,

and the other receiving circuitry. This adds quite a bit of circuitry if

the checking is done at each peripheral.

For data going the. other way (to the IOU), the same problem occurs. If

check bytes are used, they should be formed in the peripheral. No (addi-

tional) check byte former/checkers are needed in the IOU.

If the parity bit or check byte received by the peripheral is incorrect,

then the choices are:

o Do not act upon the data

o Do not act upon the data and issue a BITE fault indication

o Act on the data and issue a BITE fault indication.

Similar choices exist for the IOU. The best policy would appear to be to

issue a BITE fault indication and do not act on the data.

253

It appears that if any peripheral interface error detecting coding is

used (and none may be necessary) that the parity bit is the best choice.

This adds a time penalty of 17/16 x (for COPE) and about 1 SSI for each

former or checker.

3.6.2 Self-Test

The self-testing is regarded here as the hardware fault detection techniques

other than error detection coding. This self-testing hardware is often

referred to as BITE, or built-in test equipment, although a somewhat more

descriptive term might be devised, since fault detection is the function

being performed.

The self-testing should be divided into that for and by the processor and

that done in the peripherals.

3.6.2.1 Processor Self-Test

The hardware self-test provisions designed into COPE are representative of

processor self-test techniques. These provisions are:

Detection of illegal instructions (in the ACU instruction decoder)

and illegal device addresses (in the IOU). These detections are of

limited use since they detect only the few (out of many) illegal

possibilities. Note that this is illegalnot improper or incorrect

detection. In a new COPE design this BITE would probably not be

included.

* Detection of micro-timing counter overflow (in the ACU). This detec-

tion of the normally unused states also has limited usefulness and

would probably not be done again.

* Detection of RAM parity error. A parity bit is formed and checked on

each RAM read or write operation. This would probably be done again

for RAM (and PWM) if other error detecting coding were not used.

* Detection of actual block power condition disagreement with power

control signal. This check, done in the RCU, provided the RCU with

an indication that the block was or was not following power control

instructions. It is debatable if this is necessary, since if the

block power status is improper then the processor cannot operate

properly and this will be detected by software soon enough.

254

o Detection of improper program timing or synchronization. This was

done in COPE by timers in the IOU and RCU. These timers required the

execution of an ADVance instruction within a predetermined window or

a fault is registered. As noted elsewhere, it is now felt that the

ACU should be synchronized to synch signals from the RCU'and the RCU

should receive data from the ACU a prescribed time later or a system

fault is registered. This is the principal fault detection technique

in the processor.

o Power fault detection. This was used in COPE, and should be retained,

to indicate power interrupts. Similar circuits have also been devised

to detect nuclear events or large E or H fields.

No path, bus or ROM error detection was used on COPE. If this is wanted,

then some form of error detection coding can be used.

Note that the hardware BITE that should be used in the processor consists

mainly of the power fault detection and timing fault detection.

3.6.2.2 Peripheral Self-Test

The peripheral BITE used should be only that which enhances the ability of

the processor to more quickly or more definitely detect faults in the

peripherals. If those faults are either of no importance or they can be

detected from the normal signals from the peripherals (by the processor

software), then no peripheral BITE is needed.

All peripheral BITE fault signals are assumed to be bi-levels interfacing

with the IOU.

The different peripherals are:

o Wide angle sun snesor (probably analog) and electronics

o Fine sun sensor (digital) and electronics

o Star sensor and electronics

o Inertial reference unit and electronics

- gyros

- accelerometers

o Reaction wheels and drive electronics

o Thrusters and drive electronics

o Jet-Vane actuators and drive electronics

255

• Scan platform actuators and drive electronics

e Back-up electronics.

Each peripheral is taken in turn and discussed relative to possible BITE

approaches.

Wide Angle Sun Sensor

* This sensor is used for acquisition (using the processor) and for

direct control through the back-up electronics.

* The function is to sense the sun in two axes and provide analog error

signal outputs. These outputs limit for large angles and then drop

to zero with an unstable, broad null at -1800.

* Possible BITE approaches:

- Use of a separate detector to indicate sun presence.

- Summing of all cell outputs to indicate sun presence.

* Discussion of BITE approaches:

- Probably neither approach is needed, although neither is expensive.

Both indicate sun presence. Absence of the sun and null output

would indicate a fault. Also absence of the sun and any combination

of two axis outputs short of saturation would indicate a fault

(assuming proper relative field-of-view.)

- The proper functioning of the sun sensor can be determined by the

use of the other sun sensors and star sensors and by system level

tests.

Fine Sun Sensor

* This sensor is used for fine pointing and to update the inertial

reference input.

* The function is to-sense the sun in two axes and provide digital

(probably) error signal outputs. The sensor would probably be a

mask-coded digital sun sensor. Beyond the field-of-view, the outputs

have no significance.

* The electronics needed would range from simple amplifiers and level

detectors for parallel outputs (and moderate accuracy) to this plus

256

other logic (and peripheral sending circuitry, see Section 3.4.5)
for serial interface and more stringent accuracy requirements.

o Possible BITE approaches:

- Internal LED's to stimulate the cells, used by command.

- Commutated test of individual amplifier inputs, used by command.

- Checks of the reasonableness of the Gray-coded cell outputs (only

one bit-change per mask transition).

o Discussion of BITE approaches:

- Commanded stimulus approaches do not seem to be needed for this

sensor. Neither do reasonableness checks.

- Again functional redundancy can be used, particularly with the wide

angle sun sensor. Other system-level reasonableness checks can also

be used (comparison with gyro data, etc.)

Star Sensor and Electronics

o It is presumed that the star sensor is either a single axis or a two-

axis sensor with a digital serial output of the error signal(s). The
sensor might also have a star magnitude output (digital).

o This sensor is used for fine pointing and to update the inertial

reference input.

o The electronics used would be relatively complex and primarily of
digital implementation (whether or not.an image dissector tube or a
solid-state detector were used.) A high-voltage power supply would

be needed in the former case.

o Possible BITE approaches:

- Use a detection of voltage on internal power supplies

- Use internal detection of illegal counter states, etc.

- Use a commanded LED stimulus internal to the sensor

- Detect sensor mode (track vs. acquisition scan , etc.) as being
different than proper.

- Command deflect scan and note proper reacquisition

- Detect sun entry into field-of-view.

257

Discussion of BITE approaches:

- Functional redundancy can be used, relative to the sun sensors and

the internal reference and should be very powerful for fault

detection.

- Any of the listed BITE techniques can be used, with the preference

given to those not requiring commanding.

Inertial Reference Unit

* This sensor is used for detecting vehicle angular position, angular

rates and linear accelerations. It contains gyros and accelerometers.

The accelerometers are used during mid-course corrections for on-

board control of velocity corrections.

* It is assumed that the gyros are used for measuring rate, and by

internal IRU integration, determining position. The IRU may contain

one gyro per axis and two IRU's are used for redundancy; or four or

more gyros may be used oriented at angles to each other so that any

3 gyros may be used for the 3 axes. In the latter case, more than

the minimum 3 gyros may be operated to provide a functional redun-

dancy (which is a form of BITE).

* The loop closure is.assumed to be in the IRU for all loops. The inter-

face with the IOU would consist of one serial word per axis of out-

put with the interface asychronous. Where multiple modes are present

(rate/position), the modes would be commandable by bi-levels from the

IOU with the same output interface used. Scale factors might also be

commandable.

* The IRU would probably contain the AC power supplies needed for the

gyros and accelerometers.

* Possible BITE approaches include:

- Spin motor monitors on all gyros indicate synchronized operation of

the gyros.

- The proper voltage, frequency, phase relationship of the AC supplies

can be detected and made into a go/no-go signal.

258

- A commandable torquer stimulus can be incorporated so that the
processor may command torque each gyro (at a pre-wired rate)-to
provide IRU and system stimuli.

- Limit sensors can be built in to measure saturation of amplifiers,

non-presence of torquer pulses, etc.

o Discussion of BITE approaches:

- Spin motor monitors should be included as a minimum for each gyro.
This covers the most likely failures.

- The commandable torquer stimulus is a nice feature for use in sys-
tem fault detection.

- The other BITE approaches have limited usefulness in comparison
with the hardware added, and are probably not necessary.

Reaction Wheels and Drive Electronics

o For reasons expl.ained in Section 3.1.3 , the reaction wheels and
their drive electronics should be permanently coupled (paired), per
axis from a redundancy and power control sense.

o The reaction wheel(s) is/are used to torque the spacecraft. This is
done by making speed changes from a biased value, with the value
either zero or some nominal speed providing net momentum.

o The reaction wheel contains a tachometer (usually pulse type) to
measure the speed.

o The electronics drives the wheel and closes the speed control loop,
using the wheel speed as feedback. The signal to the wheel is normal-
ly 2 phase, high power modulated ac. The speed data must be delivered
to the processor also.

o The interfaces with the processor are:

- wheel speed command from the processor, consisting of a data word
proportional to speed (and direction) commanded.

- wheel speed to the processor, consisting of a data word proportional
to actual speed (and direction).

259

- Other bi-level commands indicating start-up mode or gain changes,

etc.

* Possible BITE approaches are:

- Detectors for wheel voltage, current and/or temperature can be

provided to create bi-levels. These parameters may also be de-

livered to the IOU in analog form.

- Modes can be indicated (confirmed) by bi-levels.

- The modulator duty cycle can be provided as a linear signal or

detected bi-level.

- When the difference between commanded and actual speeds is above a

certain amount, this can be detected and delivered as a bi-level.

* Discussion of BITE approaches:

- Data already available in the processor (such as speed difference)

should not be separately provided. This includes voltage, current,

temperature, etc; if already provided for telemetry. Otherwise,

they should be combined for BITE.

- Mode confirmation should be used.

- It appears that no other BITE is indicated.

Thrusters and Drive Electronics

* The thrusters are used for 3-axis attitude control of the spacecraft

and for low-valued velocity corrections.

* The coupling of the thrusters and their drive electronics for re-

dundancy and single-point failure prevention is discusses in

Section 3.2.4.

* The resulting interface with the IOU will consist of several words

of redundant thruster valve command data. Mode bi-levels may also

be included, as required.

* The BITE problem is to detect improper functioning as far "downstream"

as possible, preferably to the thrust output of the thrusters. Pos-

sible BITE approaches include:

260

- Detection of actual thruster firing. This can be done by the fol-
lowing techniques:

- Use of 3-axis accelerometers to determine accelerations

- Use of gyros to detect rates

- Use of pressure transducers to detect thruster chamber pressures

(or pressure "switches")

- Use of thruster chamber temperature transducers.

- Detection of the command signals to the thruster valves.

o All of these BITE approaches must be able to recognize both short
(few millisecond) and long (greater than several seconds) firings;
both firings that should occur and those that should not. Normally,

when pressure switch or valve driver command data is used (the most

common techniques), some data storage in the valve drive electronics
is needed to accommodate "memory" between processor input cycles.

This storage is probably best done by the use of a set of latches (one
per thruster) which store whether or not each thruster has fired

since the data was last read into the processor. The readout then

clears (resets) the latches for new data. This technique allows the

processor to determine the valve firings (but not their length, un-

less it is quite long).

o The use of other spacecraft sensors (that are needed for normal posi-

tion sensing) to detect thruster firing, is advisable. On the other
hand, use of separate rate or acceleration sensors is not warranted.

o The addition of pressure switches to each thruster has hardware dif-

ficulties and a moderate weight impact. There have also been prob-
lems with the reliability of such sensors. Their use is probably not
advisable.

o Monitoring the valve command signals from the valve driver can be

(and has been) done, but its worth is marginal.

o Probably no (separate) BITE from the valves or drivers is necessary.

261

Actuators and Drive Electronics

* Discussed here are both jet-vane and scan platform (or other experi-

ment) actuators, which have similar problems.

* These actuators are used to control the pointing of a liquid rocket

engine (used for large value midcourse corrections) or experiment

platforms. The actuators are linear or rotary and involve stepper

or servo motors and gear trains to provide torque.

* The servo loops involved should be closed in the drive electronics,

unless (as might occur in experiment drives) the bandwidths involved

are sufficiently low that they impose no penalties on the processor

cycle.

* For each servo, a position transducer of some type provides position

feedback. Rate (velocity) feedback may be derived or may be de-

veloped from separate transducers. The position information may also

be needed in the processor.

* Normally each drive actuator and its electronics are permanently

coupled together and switched as a block for redundancy (see

Section 3.1.3).

* The signal from the.IOU to the drive electronics normally consists of

one data word per actuator containing a position command. As noted,

the position feedback may also be delivered back to the processor.

Mode, gain or other bi-level signals may also be used.

* A malfunction in the functioning of the actuator and its electronics

is probably most easily detected by the effect on the spacecraft or

experiment pointing/rates, etc. This can be detected by the use of

the normal sensors/experiment sensors, etc. Other possible BITE

approaches include:

- Use of voltage, current, temperature monitors for the actuators

- Detection of servo loop malfunction (wrong mode, excessive error,

etc.)

- Use of redundant position transducer indications.

Generally speaking, these latter approaches are unnecessary.

262

Back-up Electronics

o The back-up electronics consists of a simple analog control system in-

volving the wide-angle sun sensor and thruster modulation control to

permit coarse sun-pointing for catastrophic malfunction of the re-

mainder of the control system. It is not used when the processor is

functional.

o The back-up electronics is commanded into and out of use either from

the ground (directly, not through the processor) or from the proces-

sor software or "hard-core" portion if a non-reconfigurable failure

condition is sensed.

o It appears that the only "BITE" necessary is an on/off indication

direct to the telemetry subsystem and also to the processor. No

other fault/failure detection seems indicated.

The BITE techniques that could be used in the peripherals fall into three

classes:

o Detecting that something did happen that should have (confirmation)

o Detecting that something did not happen when it should have (absence

of confirmation)

o Detection that something did happen that should not have (fault

detection) (the true BITE situation.)

A further distinction can be made between:

o Malfunctions that can be detected by other portions of the system.

(sensors), which accomplishes the detection by a form of functional

redundancy. These are system-level fault detections.

o Malfunctions that can only be detected by BITE.

o Malfunctions that can also be detected by BITE and provide an "earlier"

or more convenient detection.

It is a contention here, (but unable to be proved), that there are not any

malfunctions that can only be detected by BITE. Certainly one wants to

maximally utilize the system level fault detections, being restricted only

by program size and time available. All peripheral BITE, therefore be-

comes optional, since none is required. There are some techniques whose

263

worth is considerable in comparison to the penalties of their inclusion.

Those true BITE techniques recommended are: (not included are confirma-

tion techniques, normally considered).

* No sun or star sensor BITE.

* Use a BITE bit for each gyro for spin motor monitoring (this is the

highest failure probability item, and a slow degradation of spin

speed is hard to detect otherwise, since its first effect will be

an increase in drift, which is difficult to detect)

* No reaction wheel or actuator BITE.

* No back-up electronics BITE.

The recommended result is that no BITE (other than the gyro spin motor

monitoring already incorporated into IRU's) is needed. This means that

existing peripherals need no modifications for this feature.

3.6.2.3 Clock Faults

The processor clock affords a separate situation for fault detection. It

is assumed that all of the peripherals use the same clock (since they are

controlled by the processor) so this clock becomes the one for the entire

control system.

This clock is very vital to the system operation. If the clock fails or

stops, then the system fails. If the clock is too far off in frequency,

then the system also may fail or be degraded in some way.

In some cases the clock may be supplied from outside the system and be

derived from or shared by other systems in the spacecraft. If so, then

that clock source must be "perfectly reliable" or must possess the same

kinds of fault detection/redundancies discussed here.

For purposes of this discussion, the clock will be assumed to be some-

where in the system and is probably a separate reliability element. The

clock source (oscillator) will probably have to be crystal controlled to

obtain the timing accuracy and frequency stability desired (if any criti-

cal timing functions are needed in the system).

Most processors will require multi-phase clock signals (2 or 4 phase) and

the phase relationship must remain proper. The phase relationship of each

phase to the others must be maintained. The frequencies(of the phases)

264

are usually in the range from 500 kHz to 1.5 MHz, indicating an oscillator

frequency of from 2 to 6 MHz (for a 4-phase clock).

If any phase fails, that is regarded as a clock failure. Failures can

result in (for any/all phases):

o No frequency - stuck on zero

o No frequency - stuck on one

o One clock phase becomes the same as another

o Frequency too low

o Frequency too high

The phases (four phases assumed) are normally at a 3:1 duty cycle and are

obtained from a divide by four counter (with gating) or from a 4-stage

shift register. The resulting phases are shown relative to the oscillator

frequency in Figure 3-52.

x VIITj7-Ln-~n n TL I-

B

Figure 3-52 Clock Phases

Direct detection of clock phase faults can be done using these five signals.

Frequency errors can best be detected on X. This can be done by using

one-shot multivibrators and gating. The one-shot is started by the rise

in X. A window is enabled that the next rise of X must fall within or

else a fault is indicated. On COPE the one-shot was replaced by a delay

line.

Another approach is to use a delay line or one shot to delay the X pulses

exactly one period and then run the delayed and undelayed pulses into an

265

exclusive or gate. Its output can be sensed by a level-detector to de-

termine a thresholded degree of frequency difference.

The phase signals can all be and'ed to indicate if they overlap each

other (which they should not). This also handles the failures of stuck

on one. If they are or'ed, then any gaps (where a phase is missing) will

show up as a gap in the or'ed signal. This detects stuck on zero for any

or all phases.

The or'ing of these three detectings (frequency not proper, overlap (or

stuck on one), and a gap (or stuck on zero) can provide a clock fault sig-

nal which can be used to switch the redundancy of the clocks.

The cross-strapping of the clock phases must be carefully handled to ensure

no single-point failures. Since the clocks are used by many elements of

the system, a clock bus approach is probably better.

Such an approach is shown in Figure 3-53. . Here only one (of the five)

lines is shown. Bothoscillators are always running (but unsynchronized).

The flip-flop arbitrarily selects one oscillator/bus to provide all users

and the fault detector with that clock. This is done using power-gated

bus line receivers for each user and the fault detection circuit. If no

fault occurs in that selected oscillator/bus, then it continues to be used.

If a fault occurs, then the fault detector causes the selection flip-flop

to toggle, selecting the other oscillator/bus. Note that the power to the

oscillators could also be switched on and off by the flip-flop, if the

start-up delay/transients are acceptable. This saves more power.

Note that if a switchover occurs, due to the non-synchronized phase relation-

ship of the two oscillators, clock glitches can occur because phase C may

follow phase A, etc. This could cause other (unnecessary) processor re-

configurations. In COPE this was handled by the approach shown in

Figure 3-54.

Here, the two oscillators were always running. The fault detectors would.

select one of the two oscillator outputs to run into triplicated logic and

dividers. The four-phase outputs of the counters were voted upon in two

sets of voting circuits (one per phase), with one set being for each system

bus. This approach is satisfactory, but rather extravagant of power.

266

CLOCK CLOCK
BUS-1 BUS-2

OSC- DIVIDER-1 A

FAULT

A POWER FF FAULT
DRIVER DETECTOR

B DRIVER

TYPICAL USER
INTERFACE

OSC-2 DIVIDER-2
INTERFACE

Figure 3,53 Block Diagram of Clock Redundancy - Method 1
(one line (of five) shown)

OSC-1 FAULT SELECT LOGIC

BUS-A
FAULT DIIDER-1DETECTOR-] I !u

VODIVIDER-2TERS
FAULT
DETECTOR-2 .

DIVIDER-3

OUTPUT
VOTERS

Figure 3 54 Block Diagram of Clock Redundancy - Method 2

267

Another approach possible when the RCU's are standby redundant and are

monitored by a HCU, is to have a clock oscillator and the 4-phase divider

in each RCU, with the outputs cross-strapped or bussed together. (See

Section 3.1.3).

If a clock stops, changes frequency, etc, this will be detected by a change

in the timing or coding of the status word periodically sent from the ACU

to the RCU (just as any other fault would be indicated). The RCU will

attempt to correct this fault by reconfiguring the primary processor. This

will be unsuccessful since the fault is within the RCU. The HCU will de-

tect the lack of reconfiguration and replace the RCU. Restart will then

occur and operation proceed satisfactorily.

Other approaches can also be devised for clock maintenance. The important

criterion is the absence of single-point failures. After that, power

minimization and other features should be optimized.

268

3.7 Fault Tolerance, Failure Detection and Recovery

3.7.1 Fault Tolerance Criteria

Fault tolerance appears as an elusive property because current definitions

either lack generality or are rather vague. In fact, most of the definitions

found in the literature reflect ,requirements and/or objectives associated

with specific applications. For instance, Hopkins et al EI] define fault

tolerance as the ability of a space vehicle to achieve its mission despite

component failures or induced errors. In another context, Avizienis. [2]

defines fault tolerant computing as the ability to execute specified algor-

ithms regardless of hardware failures. A more general view is expressed

by Newmann, Goldberg, Levitt and Wesley [3], who consider fault tolerance

as the ability of a system to withstand various kinds of hardware mal-

functions and mishaps, but with potential flexibility implying the accept-

ability of incorrect or degraded performance in certain portions or func-

tions of the system.

Man-made systems are programmed or structured to perform specific functions.

If the components used to implement a system in this class are ideal (i.e.

they cannot degrade or fail), the dynamic behavior is deterministic in the

sense that input/output relationships will be strictly as determined by the

program or functional structure. When failures in the components may occur,

the behavior patterns of the system will be more numerous, since each type

of failure produces a new set of behavior patterns (derived from the ideal

set). Several of these behavior patterns will be acceptable and the rest

will not. Since failure mechanisms are stochastic, a probability of occur-

rence will be associated with each system behavior pattern. The accept-

ability of the behavior patterns of a system subject to failures, and their

relative probabilities of occurrence, provide general criteria for defining

its fault tolerant qualities as follows:

o Definition 1: A system is completely fault tolerant when all its

behavior patterns are acceptable.

o Definition 2: A system is partially fault tolerant (fault tolerant)

when the probabilities of occurrence of unacceptable behavior patterns

are p (Bi) < fI

where the { fI } constitute the fault tolerance criteria.

269

A simple example illustrating the concept of fault tolerance embodied in
Definition 2 is the power steering mechanism of an automobile. Failures

in the hydraulic components produce acceptable behavior patterns because,

although more effort is required to operate the steering wheel, control

of the vehicle is not completely lost. Fracture of the steering column

may cause a series of unacceptable behavior patterns (e.g., collision,

abort of a trip, accident, etc.) but since this is a very unlikely event,

the steering system of the automobile is still considered fault-tolerant.

One important conclusion proceeding from the definitions is that, in order

to evaluate or characterize the fault tolerance of a system on their terms,

all behavior patterns must be identified and their probabilities of occur-

rence must be determined. In general, this is either an impossible or an

impractical task for all but the simplest of systems., To reconcile the defini-

tions with the possibility of being unable to identify all the B, and com-

pute the p(B*), confidence criteria can be assigned (e.g., in terms of

confidence intervals 'and confidence levels).

The question of how confident the design should be on the fault tolerance

of a system is not so critical for a ground-based installation as it is for

a space-borne application when the round-trip communication time can be in
the four to six-hour range. The autonomy requirements of the application
or mission have a significant influence on the definition of which behavior

patterns are unacceptable and how much confidence is needed.

A positive approach to improving fault tolerance confidence consists in

structuring the system so that the number of behavior patterns is reduced

to a number which makes it possible for the designer to identify them all.

This structured design concept has been proposed by Dijkstra [4] as a

methodology providing a short cut to the well-known, but yet unsolved, soft-

ware verification problem.

There is a great deal of overlapping between the domains of reliability and

fault tolerance, but the main distinction is in that reliability: in the

classical sense, is concerned with the ability of a system to perform its

functions over a specified lifetime$ while fault tolerance is a quality of

the system's behavior in the presence of faults.

270

As is the case for reliability, fault tolerance can be achieved by individual

or combined use of design, operating, and maintenance techniques. Design

techniques include the provision of redundancy in the hardware and software,

recovery management facilities, and self-contained capabilities for in-line

functional performance verification. Operating techniques imply the exist-

ance and implementation of policies for attaining acceptable system behavior

in the presence of faults. Maintenance techniques include software and

hardware for checkout and status determination, off-line diagnostics of

field units, test equipment, and repair facilities. An important conclusion

that can be derived from this list of applicable techniques is that the

elements essential for fault tolerance are:

o Unambiguous policies for establishing acceptable patterns of behavior

in the presence of faults.

o Facilities for implementing these policies (e.g., failure detection

mechanisms, redundant resources, controllers).

All systems are, to some extent, tolerant of faults, if they are sufficiently

minor. All systems which employ redundancy and are designed for survival

of all single point failures are fault tolerant (but may not be tolerant

with sufficient rapidity to accomplish system goals). Note that fault

tolerance (like all tolerance) has its limits. Eventually faults may occur

that are so massive, or frequent, that the system fails, either catastroph-

ically, or into.a degraded operation. As with any desirable feature, fault

tolerance has its cost. This is in terms of system cost , size, weight,

power, speed, etc. The degree of fault tolerance that is included should

not be greater than that required. The use of massive redundancy (TMR,

duplex, etc) approaches to achieving fault tolerance is uneconomical. These

techniques should only.be used where there is no alternative, i.e., the

need to achieve total availability, with zero loss of time for recovery from

faults. This is not the case with any spacecraft control system designed

to date.

Fault tolerance can be implemented at various levels, i.e., it may be

either centralized or distributed. In the distributed case, the organiza-

tion may be either parallel or hierarchal. The choice of approach depends

on the particular requirements of each application. For instance, in a

271

simple system, a centralized approach where all fault tolerant facilities

are concentrated in a single unit (e.g., redundancy switching network) may

be sufficient. In a complex system including a real-time digital proces-

sor, however, a multilevel hierarchal organization where each level includes

a series of fault-tolerant functions or subsystems may be necessary in

order to have a manageable number of behavior patterns. It can be shown

that, provided certain requirements on the selection of the Bi are met, a

sequence of two fault-tolerant processes is also fault tolerant.

There are to basic approaches to designing fault tolerant systems: in one,
which might be designated as analytical, the system is given, its failure
modes are determined and evaluated, and policies to cope with these patterns

of behavior are designed and implemented; in the other, the synthetic ap-

proach, fault tolerance policies and facilities are designed in parallel

with the system which, as a result, can be configured to produce a set of

compatible failure modes. The advantages of the second approach are

numerous, the most significant being

e Small number of unacceptable behavior patterns (Bi.)
* Low probabilities of occurrence (of these Bi)
e High confidence levels

* Simple, reliable policies and implementations

a High over-all system reliability

e High degree of autonomy attainable.

Autonomy is one of the essential constituents of a fault tolerant system

since,.as is the case with all man-made systems, they are intended to be

controlled by a human operator. The degree of supervision required from

the human operator is what defines the autonomy of a system. Autonomy

requirements influence the design of a fault-tolerant system through the

definition of which patterns of behavior are not acceptable from the stand-

point of compatibility with the human operator interface.

An important observation regarding the human operator is that, in general,

he does not supervise system functions directly but, instead, he monitors

secondary processes which are indicative of the system status or provide

him with measures of performance. The concept of indirect observation of
system performance can be applied to the design of efficient and economical
failure detection schemes. By analogy to the human operator, who uses

272

indicators to determine whether a system is functioning correctly or not,

a fault tolerant system can use secondary variables or adjoined processes

for detecting failures. This approach is very old and has been used suc-

cessfully in a variety of applications. Its advantages are greater and

more obvious when it is applied to a system including a digital processor

operating in real time. The cost of failure detection (e.g., redundancy,

overhead, failure detector complexity) can be significantly reduced if a

simpler process, executed in parallel with the primary one, is monitored.

A digital processor is considered operational when programs, written accord-

ing to the specifications, run, and the desired results are obtained [5].

This idea can be extended to the multiprogrammed environment where a digital

processor and a subset of programs are assumed operational if another sub-

set of programs, specifically designed for checkout purposes, run, and the

anticipated results are obtained.

More details on the various points discussed above are given in the follow-

ing sections. Before concluding this introductory section it is enlighten-

ing to mention some well-known features of the human body, which is probably

the best example of fault-tolerant design. It includes balanced apportion-

ments of redundancy, failure detection and correction, adaptivity, and

degradation capabilities. Not everything is redundant and very few faults

(in proportion to the number of elements) can cause complete system failure.

There are provisions for functional redundancy and, in case of sickness, non-

essential functions are disabled.to promote recovery. Built-in recovery

and repair facilities are provided. Degradation is gradual and uniform;

and wearout is predictable.

3.7.2 Fault Tolerance Requirements

The intent of this section is to make precise the meaning of unacceptable

behavior patterns in the case of a multipurpose control electronic system,

including a programmable digital processor, required to manage attitude

control functions aboard spacecraft for interplanetary missions.

The main objectives of fault tolerance in long-range interplanetary space-

craft systems are to prevent

o The occurrence of irreparable failures

o Reparable failures from causing failures of critical system functions.

273

Fault tolerance criteria are determined by

e Characteristics of the interface between real-time spacecraft systems

and the ground control organization

* The criticality of failure modes in relation to their consequences on

spacecraft safety and operational success within the time interval

from the occurrence of a fault to the successful completion of correc-

tive actions.

Section 2.0 described in detail the mission, and the attitude control con-

figuration assumed for reference purposes, and identifies the following

requirements as most significant from the fault tolerance standpoint.

* Availability and Recovery

There are no functions in the attitude control system requiring 100%

availability of the control electronics. The system can be allowed

to be down for short periods of time without significantly affecting

spacecraft safety and mission operations. Maximum allowable down

periods are determined by actuator failure modes (e.g., thruster

valve stuck open, TVC jet-vane actuator with hardover signals) and

typically range from 1 to 10 sec. Recovery reliability is more

important than recovery time in the assumed mission and spacecraft.

* Autonomy

The control electronics must be able to withstand, and recover from,

upsets caused by external disturbances or internal equipment failures

without action from the ground. The ground facilities can provide

intermittent supervision during cruise and continuous, round-the-clock

monitoringthrough encounter operations, but the long round-trip com-

munication times (5.3 hours from Uranus-) preclude interactive real-

time operations.

Based on the preceding general requirements and the system ponfiguration
assumed as reference, the following events can be identified as unacceptable

patterns of behavior:

* Failure to recover from down conditions in less than 0.5-to-I seconds.

* Periodic or intermittent down conditions not originated by a sequence

of new failures.

274

o Inability to perform the required functions within specifications,

given that fault-free resources are available.

o Failure to report to the ground that a failure has occurred or a re-

configuration has been made.

o Inability to detect and correct failures, masked by redundant mechan-

isms, which may cause other system failures or depletion of resources

(e.g., thruster valve leakage causing excessive operation of the

opposing thrusters).

o Failures in the control electronics causing prolonged thruster opera-
tion and/or hardover actuator driving signals.

o Inability to process ground commands correctly.

o Failure to disable and override automatic functions by ground command.

Failures producing one or more of these unacceptable behavior patterns may
be caused by sources either internal or external to the system. Internal
cause$ may be either hardware or software faults. External sources can be
either environmental or intrinsic to the controlled processes. Environ-

mental factors define the nature and characteristics of the disturbances

or influences the system must handle while performing its normal functions.

The controlled processes react upon the system through demand (e.g., power
or throughput. requirements).

The methodology for providing fault tolerance in a multi-purpose attitude
control system will be developed on the basis of the simplified configura-

tion of Figure 3-55, which represents a typical function both structurally
and operationally.

The control process can be the orientation of a spacecraft axis in a speci-

fied direction (i.e., relative to two celestial bodies) or the pointing of
a device (e.g., experiment scan platform) at a moving target. Depending

on the types of controlled process and operational regime, the actuators

can be reaction wheels, TVC jet-vane drivers, RCS thrusters, or scan plat-

form servo motor drivers. Correspondingly, the sensors can be for either
attitude determination (e.g., coarse and fine sun sensors, star tracker)

or position indication (e.g., scan platform resolvers, jet-vane LDT's).

275

Commands Telemetry

Oper. --- Actuator ---

Software ---- Processor IOU Contol

-- Sensor

Figure 3-55 Simplified Attitude Control Configilration

Process

Commands

Transfer
Sensor Data

.Process
Sensor Data

Executive
Control Law

Update Actuator
Control Signal

Acquire Status
Performance Data

Output
Telemetry Data

Figure 3-56 Typical Sequence of Operations

276

Communications between the processor and the ground are through the input/
output unit and the command and telemetry systems. The IOU also provides
data interfaces between the processor and sensors and actuators. The
processor includes arithmetic control elements, memories, and data buses or
lines. All functions, as exemplified in Figure 3-56, are performed under
control provided by the operational software, based on data and parameters
input by command.

The elementary system of Figure 3-55 and the operational.sequence assumed in
Figure 3-56 include neither redundancy nor any provisions for fault tolerance.
They are presented to provide a common basis for the discussions that will
follow.

3.7.3 Organizational Criteria for Fault Tolerance

The fundamental principle of fault tolerant design is that no system, sub-
system, or element can be considered infallible and, thus, control policies
must be implemented to either eliminate unacceptable failure modes or re-
duce their probability of occurrence to the desired levels.

In order to be able to implement a fault tolerance policy, the following
elements are required in general:

o Failure Detector

This can be a direct or indirect function performed by either hard-
ware or software elements , or both.

o Fail ure Corrector

Failure correction implies some form of redundancy which, in broad
categories, can be either active or passive. Active redundancy is the
approach based on the switching of standby units or elements. Passive
redundancy involves the simultaneous performance of a given function
by a group of-redundant units; if one of them fails, the others resume
the function without interruption. Thus , the constituents of a-fail-
ure corrector are redundant elements and a redundancy management
device.

o Buffer

If a failure occurs, the system may be subject to unacceptable dis-

turbances. The buffer is the element providing failure isolation in

these cases.

277

Fault tolerant design requires knowledge of the patterns of behavior of

the system in the presence of faults. The problem of failure mode determi-

nation is very difficult to solve when the system is provided with decision

making capabilities. From the standpoint of complexity this is a situation

analogous to the software testing problem. Software testing complexity

is a function of the numbers of decision elements and branches in these

decision elements. For instance, in a program with 25 decision elements,

if each of these elements has 3 outgoing branches the number of test cases

required for verification is 8.473 x 10". If each test case takes 1 msec,

the complete verification process would required 26 years and 10 months.

Clearly, exercising every possible path'is out of the question in a case

like this, and a more efficient and practical approach is needed. If the

system is structured so that operational paths between decision elements

are independent and their input-output characteristics are unique and well

defined, decision elements can be tested one at a time and their verifica-

tion would require 75 test cases only. A system of this type can be

represented by a directed graph with 25 nodes. Since the number of arcs

cannot be greater than

Na = 2 x () = 600

the total number of test cases will be less than 675. Assuming 1 minute

per test case, the complete operation would take 11 hours and 15 minutes.

One very important observation inspired by the preceding example is that

a considerable simplification of the testing has been achieved simply

because the test procedure could be organized according to the structure

provided in the system. This principle can be extended also to fault

tolerant functions such as failure detection and recovery, in which con-

siderable simplifications can be attained by conveniently structuring the

system.

The basic ideas of structured design have been formulated by Dijkstra [4]

for application to the software verification problem. Structured programming

is defined as a methodology for constructing programs with a structure

such that, at every stage of the testing procedure, the number of relevant

test cases will be small enough to allow trying them all. One of the key

278

ideas supporting structured design principles is that proving whether a

system will be able to perform correctly or not will be very difficult

(or impossible) unless the feasibility of validation is considered as one

of the essential requirements throughout the entire design process.

According to Dijkstra, exhaustive validation of a computer implies feeding

it with all possible programs.

Structured design is a procedure based on the establishment of partitions

and hierarchal levels and the definition of the interfaces so that specific

characteristics of the system elements can be made either visible or in-

visible at these interfaces.

The basic element in a structured system is a sequential process where the

only meaningful characteristic from the logical standpoint is the sequence

of states or events and not the speed with which the process evolves.

Thus, a structured system is an aggregate of sequential processes. An

individual process may invoke or create other processes but in itself

there are no simultaneous events. Each basic process is independent of

the others and is designed so that all its operations are sequential.

Processes may use either real or virtual processors. This is an organiza-

tion based on subdivision according to a principle of non-interference

requiring that

o The performance characteristics of the entire system be determined by

the external specifications of the parts and not by the particulars

of their internal construction or organization.

o The individual parts be mutually exclusive in the sense that each

can be defined and implemented independently from the others.

In a structured organization, each hierarchal level is characterized by

a particular view of the actual system.- The same system is seen as a

different virtual system from each level. For instance, in the "THE"

multiprogramming system [4], level 0 allocates processors to processes and

handles the real-time interrupt. Above level 0, the number of processors

shared is no longer relevant. Level 1 includes the so-called "segment

controller", which is a software device that makes actual machine addresses

invisible or irrelevant to upper levels. Level 2 is responsible for the

allocation of console keyboards via which communications between the

279

operator and higher-level processes are made. Above level 2, it is as if

each process had its own console. The process of defining abstractions

continues in a similar fashion until at level 4 one finds the user programs

and at level 5 the operator.

Based on the objective of being able to prove correctness of a program,

Dijkstra formulated the following rules for structured programming:

* Make complete specifications of the individual parts

* Satisfy yourself that the total problem is solved provided that the

program parts meet their respective specifications.

* Construct the individual parts so that, besides satisfying the speci-

fications, they are independent of one another and, also, they are

independent of the context in which they will be used.

The principles advocated for structured programming can be applied also

to the fault tolerant system design problem, where a unified and integrated

approach to the problems of providing autonomy, failure detection, recovery,

and graceful degradation capabilities is needed. In a system including a

digital processor, software and hardware design activities cannot be

independent of each other since there is a significant amount of inter-

action at all structural and operational levels.

Hierarchal or virtual levels within a fault tolerant system should be

determined primarily to meet structural and operational requirements of

failure detection and recovery processes. These processes are usually

provided with either common or similar structures, since, in an autonomous

and remote system, failure detection beyond the lowest replacement level

has no justification.

Built-in performance verification techniques or devices not only provide

more reliable means for proving corrections but also contribute to reducing

the duplication of effdrt involved in software testing. According to

Paige [6], "much redundant examination of a program is inherent in the

program proving process since this effort must essentially rediscover the

operation of the program".

280

3.7.4 Failure Detection Processes

A fault is an internal malfunction within a part. Faults may or may not

result in observable errors or system failure. Faults may be transient

or permanent. A transient fault may be caused by interference, "loose"

wires, etc. Faults are associated with hardware; but do not include misuse

or mistakes in design. A logic fault is a fault that forces a logic vari-

able into a temporarily or permanently incorrect state.

Some faults at the system level are considered as catastrophic (even though

transient). Examples include loss of power, severe environmental effects,

etc.

An error is a difference between an actual output or result and the correct

output or result. Errors imply incorrectness. Errors may be single or

multiple and may be detected or undetected.

Transient faults are probably more rare in spacecraft than commonly supposed.

Causes are usual-ly electrical or electro-magnetic in nature, being caused

by transient switching of power loads, arcing, radio-frequency interference,

the effects of faults in other systems, etc. In a well-designed and tested

system, these transients will be minimized. An assumption of the fre-

quency of transient faults and the protection to be afforded (relative to

permanentfaults) is necessary to optimize the fault-tolerant system design.

The degree of independence of faults is also important. It is important

for redundancy reasons that faultsbe independent from one element to another,

as far as possible. .(Otherwise all the reliability calculations, which

assume independence, are invalid.) Generally, faults within an integrated

circuit chip cannot be assumed to be independent and chips should not be

shared between circuits which should be independent in faulting. This

fault independence is of importance when considering how many bits of a

word may be faulty, etc.

A fault may not be detected. It may then either propagate or not. If it

propagates it may lead to more faults and/or errors. These errors may vary

in criticality and may range from immediate system "crashes", down through

the varying degrees of correctness, until the error has no importance and

is undetectable. A failure is defined as a critical, uncorrected fault.

281

Faults, therefore, lead to loss of correctness (by degree) and/or loss of

availability (by degree). Availability is the measure of the resource

presence relative to the total time.

Most of the work on fault detection and diagnosis has used the assumption

that failures will result in a "stuck-at" condition. That is, that a

failure in a logical circuit will result in one or more lines out of the

circuit taking on a constant logical value, either one or zero. These

faults are termed stuck-at-one (s-a-l) and stuck-at-zero (s-a-O), respec-

tively. Apparently most (if not all) failures are of this type and such

a model is appropriate.

The fault model may be assumed to consist of single independent faults.

This model may be largely ficticious for MSI and LSI circuits, where faults

may cause several outputs to fail simultaneously.

In general then, a fault is a necessary cause for a failure but it is not

sufficient. There are many situations where a fault either produces no

visible effects or masks another failure which, if having occurred alone

would have been detectable. In many cases, it is difficult to define a

clear boundary between failure and no-failure conditions. Failures, con-

sidered here as manifestations or consequences of faults, may be acceptable

in some cases. For instance, a stuck last significant bit may have in-

significant repercussion in an addition operation, but in a logical opera-

tion the consequences may be catastrophic.

Fault detection schemes are normally based on the identification of fail-

ures. Since faults may produce no visible effects, failure detection can

fail even when the detection device hasno faults. This brings up an im-

portant point regarding fault tolerant processes: the fact that a system

is internally fault tolerant does not imply that the process performed by

the system is also fault tolerant. Fault tolerance in a process must in-

clude acceptability criteria imposed on the system inputs.

Before discussing ways of providing fault tolerance in failure detection

schemes, it is important to examine their general structure. The block

diagram of Figure 3-57 shows the component elements and organization of a

generalized failure detection process. The primary process performs the

required functions, in response to a set of input functions, by means of a

282

series of subprocesses (only two are shown in the figure for simplicity)

which are assumed to be mutually independent. A secondary process, specially

designed and constructed for failure detection purposes, operates upon sys-

tem inputs and primary process intermediate variables and outputs. The

failure detector determines whether the primary process behaves acceptably

or not by examining the secondary process outputs. The generalized model

not only provides a high degree of flexibility for representing most widely

used failure detection approaches but also indicates a modus procedendi for

the synthesis of efficient and economical (from the redundancy standpoint)

techniques.

Figure 3-58 is an example showing the classical method for failure detection

based on the comparision of the outputs of two identical systems. In this

case, the secondary process consists of a replica of the primary system and

a comparator. At the expense of 100% redundancy, this approach offers the

advantage of not requiring an exhaustive evaluation of the failure modes

of the primary system. Comparison schemes minimize the occurrence of fail-

ure modes not recognizable by the failure detector, but they can be defeated

in cases where system Inputs: produce unflexed outputs. Depending on the

system configuration and speed (or bandwidth) requirements, the operations

of the primary and redundant systems can be either simultaneous or sequen-

tial. One of the main disadvantages of the comparative approach is that

the occurrence of a disagreement does not imply that the primary system is

faulty.

The configuration shown in Figure 3-59 eliminates ambiguities regarding the

location of a detected failure by using a higher level of redundancy. The

secondary process includes two replicas of the primary system and a voting

comparator. This method assumes fault-free conditions in two-out-of-three

systems when their outputs agree. Normally, only one redundant system is

used for comparison tests. The second one is invoked only when a disagree-

ment occurs. One of the main advantages of triple-modular redundant con-

figurations is that in-line failure detection and correction be implemented

where high speed of response is required.

Another example of failure detection approach representable by the model

of Figure 3-57 is shown schematically in Figure 3-60. The secondary process

283

Rnputs

SubProcess SubProcess OuSystem
A B Outputs

,- ,

Primary Process

Figure 3.57 Generalized Failure Detection Process

Redundant System - Comparator Test
ReunaResults

System

Primary System System Outputs

Figure 3-58 Operating Failure Detection

F 42Redundant
System 8

Comparator Test

---w Redundant System Results
System 1

Inputs

-- Primary System System Outputs

Figure 3-59 Voting Failure Detection and Location

284

is normalized so that its output meets a criterion of the type

F * = Q

where the symbol (*) represents an operational relationship (e.g., sum or

product of instantaneous samples, sum of squares , convolution, etc.) and

Q is a normalizing constant or function. Typical examples of normalized

operations with Q = 1 are the computation of sine and cosecant functions

and the generation of complementary logic functions. Normalization can

be done either in parallel or sequentially and its main advantage is that,

in some cases, conjugate processes may require less than 100% redundancy.

Also , this approach provides greater sensitivity to system faults producing

no detectable failures where identical operations are compared. Failure

detection by normalization is particularly attractive for software imple-

mentation in simplex systems since it provides a more comprehensive veri-

fication of machine resources than repetition of computation sequences.

The scheme shown in Figure 3-61 is also based on the use of a secondary process.

completely different from the primary process. The figure represents an

example configuration where the primary system is checked.out by application

of a set of predetermined input sequences and comparison of the corre-

sponding responses to stored results. The options exist to perform the tests

concurrently with each primary system computation , or periodically , or only

when necessary. The choice depends on the performance and diagnostic re-

quirements of each application. Since the primary.system can be tested

dynamically , high sensitivity to faults likely to produce no detectable

failures is obtainable. Failure diagnosis by programmed tests is particu-

larly attractive for multiprogrammed systems , where the primary process is

undefined, and applications where the primary systems may be subject to

unflexed input signals. The degree of success attainable with this approach

depends on the choice of test cases. Every relevant program path or machine

resource must be exercised in order to provide adequate validation of the

system status. Structured design techniques and path sensitizing methods

play important roles in the process of selection of input sequences and

states.

285

Figure 3-62 shows a very simple and effective approach for failure detection
in real time systems comprising a digital processor. The idea of using a
secondary process for failure detection is exploited to minimize the amount
of in-line redundancy required and for greatly simplifying the mechaniza-

tion of the failure detector. The primary process is subdivided into short

execution cycles of equal duration by means of a sequence of interrupts
developed by the cycle timer. The primary process is structured so that

timing signals are generated within prescribed intervals (relative to the
interrupts or reset signals) if, and only if, no failures occur during the
synchronous computation cycles. The timing checker develops an output pulse

each time a timing signal of the correct type is received within the corre-
sponding acceptance window. If the pulse train generated by the timing

checker is discontinued, this means that a failure has occurred in either
the primary process, or the cycle timer or the timing checker itself.

There are many types of secondary or adjoined processes that may be used
for failure detection. The key problem is to prove that a mapping exists
between the failure modes of the primary and secondary processes. Struc-
tured design techniques can be used for this purpose as effectively as in
the program verification problem. Failure detection processes can be
organized in tree-like hierarchal structures where each level operates with
its own individual adjoined process. This allows subdividing the failure
mode dictionary of the primary system and provides capabilities for check-
ing the checkers. The top level decision making element is the so called
hardcore device, which can be monitored only by the human operator.

Failure detection approaches can be implemented by either hardware or
software techniques or a combination of both. Software-controlled imple-
mentations are very attractive because they facilitate the application of
simple and powerful bootstrapping techniques. Hardware monitors are
usually required to verify that software failure detection methods are
operational. Maximum protection against failure concealment is needed in.
hardcore devices, which normally are provided with highly redundant fail-
ure detection mechanisms.

In a well designed recovery management system, failure detection is usually
distributed. Simplicity, safety and efficiency are promoted by decentrali-
zation of both failure detection and reconfiguration capabilities. This

286

CONJUGATE PROCESS NORMALZNTEST
TESTER R

RESULTS
SYSTEM

INPUTS

PRIMARY PROCESS SYSTEM OUTPUTS

F

Figure 3-60 Failure Detection by Normalization

TEST SIGNAL , RESPONSE
AANALYZER RESULT

PRIARY SYSTEM
SYSTEM

SO -- SYSTEM OUTPUTS
OUTPUTS

Figure 3-61 Failure Detection by Programmed Tests

RESET
CYCLE TIMER TIMING

CHECKER TEST
RESULTS

INTERRUPTS

TIMING

PRIMARY

PROCESS SYSTEM OUTPUTS
SYSTEM INPUTS

Figure 3-62 Failure Detection by Means of Adjoint Process

287

approach significantly reduces the complexity of the hardcore element which,

otherwise, would have to service all system/equipment malfunctions.

Software diagnostics have the advantages of flexibility and compatibility

with function and equipment options. Their main disadvantages are the

associated computational overhead and requirements for reliable input/out-

put devices and monitoring equipment. The problem with software failure

detection is that it does not exist unless all the processing hardware

required is fully operational.

Hardware diagnostics have the advantage of remaining operational when the

processor is down. In general, hardware failure detection equipment fails

selectively instead of massively.

The selection of implementation approaches to failure detection is influenced

by a number of factors, the most important of which are the type of re-

covery management concept adopted for the system and the criticalities of

failures (to be handled by each level) from the standpoints of safety and

recovery reliability.

3.7.5 Recovery Management Techniques

Recovery management is a function involving the operational control of sys-

tem facilities to provide a safe and speedy recovery from a failure or un-

scheduled system interruption or upset resulting from either equipment

malfunctions or external perturbations. Its primary concern is to restore

system operation (total or as much as feasible) with minimum impact upon

the availability of system resources. High degrees of system reliability

and availability are obtainable when recovery is organized in a multi-level

hierarchal structure. In general, no recovery facility can be designed

to handle all types of system (or machine) failures.

In a multipurpose system the recovery organization must be flexible and

compatible with function and equipment options. Some recovery facilities

must be optional and, as such, must be specified by the user at the time

of system definition for a specific mission.

Recovery can be accomplished by either passive or active redundancy tech--

niques. In the passive case, parallel operations are performed in line

by a set of identical elements so that a failure in one of these elements

will not produce interruptions of the system functions. Typical examples

288

of passive implementations are TMR and quad logic configurations. In

these, internal failures are detected and localized automatically and

replacement of failed units can be made at leisure for restoring error

correction capabilities.

Active redundancy techniques are used when system interruptions are accept-

able. When a failure is detected, standby redundant units are switched

into operation for replacing the failed units. The fundamental difference

between this approach and the preceding one is that , in the active re-

dundancy case, failure detection and reconfiguration functions are more

critical and complex.

For interplanetary spacecraft applications, the use of passive redundancy

techniques at the system or subsystem levels is prohibitive in terms of

weight and power , and it is not needed because most functions can be inter-

tupted for short periods of time without causing detrimental effects on

system performance. Active redundancy methods are preferred because sig-

nificant economies of equipment and power can be achieved. The hardcore

elements, however, must be provided with failure masking protection in

order to achieve the required degree of autonomy.

An important problem in the design of an active recovery system is the

definition of an efficient rollback strategy. After a failure is corrected ,

the question is how to restart the system operation. In a real time system

controlled by a digital processor it may not be feasible to simply start

running the entire set of programs from the-beginning, either because of

time limitations or as a consequence of inadequacies in the current input

and state data.

Rohr [7] defines rollback as a hardware-initiated transfer of control to

a software-specified restart address for program resumption after fault

detection. This restart address is usually called the rollback point.

Program and processor status information must be saved to allow proper

initialization after rollback and retry the portion of the program that

failed. As pointed out by Rohr , action following rollback depends on the

type of activities that were being performed when the failure occurred.

In the case of normal computations , it is sufficient to retrieve the

latest copy of the rollback state vector and retry the failed program

module. If a repeatable input-output function was being performed,

289

additional operations may be required to re-establish initial conditions.

In the case of non-repeatable events, recovery operations may be more

complex since there may be circumstances where retry has to take place

without repeating some of the events that have been executed already.

There are various strategies that can be used to set up rollback points.

As in.the SABRE 7090 and IBM 9020 systems, rollback points may be inserted

at periodic intervals, irrespective of the particular programs being

processed. Another approach, which is preferred for the reference con-

figuration, consists in subdividing the program into self-contained modules,

which are executed as a sequence of cycles of equal duration, and choosing

the beginning of each module as the corresponding rollback point. This

technique leads to a very simple and straightforward rollback organization

and is preferred because it has many other attractive features from the

fault tolerance standpoint. A third approach, providing flexibility for

optimizing rollback strategies for each particular program, has been ex-

tensively analyzed by Chaudy and Ramamoorty [8] and consists in defining the

rollback points during the programming effort to meet a specified set of

performance criteria. In all cases, non-volatile, secondary storage capa-

bilities are required to preserve state data through recovery operations,

and saving these data securely implies some non-negligible penalty in

terms of computational overhead. Section 3.1.4 (Redundancy Management)

discussed options for the management of system redundancy as involved in

recovery. Some of this material is repeated and expanded upon here.

An example showing the basic elements and organization required for im-

plementing an active recovery approach in a real-time control system using

a digital processor is shown in Figure 3-63. The hardcore is an autonomous

element, provided with a high level of redundancy, which is reponsible for

monitoring the system performance and performing reconfigurations of the

processor elements in cases of failures. Hardcore status and functions

can be monitored only by the human operator (i.e., ground station) who,

if so desired, can intervene by disabling automatic operations and over-

riding hardcore decisions by command. Sensors, actuators, and other

peripheral devices do not need to be under direct supervision by the hard-

core since they can be monitored and reconfigured by the processor through

the input-output units (IOU).

290

Human
Operator

Hardcore

[FO

ACU ROM '" DBS RAM PWM "' IOU

PDB EIU 1 M 1 N

Sensors Actuators

Figure 3-63 Organization For Active

Recovery Management

291

Recovery of the processor elements can be effected by means of either a

centralized or a bootstrapped approach. Figure 3-64 shows the centralized
concept implemented in the COPE system. The Reconfiguration Control Unit

monitors processor performance through a series of hardware- and software-

generated fault signals. Redundant processor units are reconfigured

directly by the RCU, which follows a hard-wired combinational sequence

until signals indicating that normal operation has been restored are re-

ceived. The reconfiguration sequence starts by switching redundant units

of different types one at a time until all the basic units have been tried.

If this process fails, a more comprehensive sequence is followed until all

possible combinations of redundant elements of different types have been

tried. Except for the main data buses (DBS) and the peripheral data buses

(PDB), the numbers of redundant units shown in the figure are arbitrary.

The DBS are shown separate only to differentiate between parallel and byte-

organized data channels. The peripheral data bus (PDB) includes many

other signal lines in addition to the serial data channel represented in

the figure. The switches acting on the RAM's are intended to show the

capability to select two out of four elements.

The bootstrapped approach shown schematically in Figure 3-65 simplifies the
hardcore by restricting its sphere of influence to only the primary com-

ponents of the processor. After the hardcore determines that the essential

functions performed by these components are correct, both the hardcore

and the elements in level 1 proceed to test and, if necessary, reconfigure

the elements in level 2 through the input-output unit (IOU). After suc-

cessfully completing the bootstrapping recovery procedure, normal operations

are resumed and the hardcore monitors performance either by means of hard-

ware and software fault signals or by periodically interrupting applications

program execution to repeat the bootstrapping sequence, or by means of a.

combination of both methods.

Further simplification of the hardcore can be accomplished by going to a

distributed system as shown in Figure3-66. System monitoring and reconfigu-

ration functions are performed by the reconfiguration control units (RCU)

which are standby redundant. Hardcore functions are reduced to monitoring

and reconfiguring the RCU's by use of a Hardcore Unit (HCU), which is

passively redundant. Recovery of the rest of the system is by means of a

bootstrapping procedure as in the case of Figure 3-65.An important advantage

292

RCU (TMR) Ground
Commands

I

I I I I I

Peripherals

IROM ROM 2

ACU IOU

ACU PB IOU PDBRAM I I "1 I -

RAM I

ACU IOU

iure 3-64 Centralized Recovery Approach Used in COPE SystemBS

Fiaure 3-64 Centralized Recovery ADppoach USed in COPE System

Interface Units

/ ACU'S

1 O s ROWS

O i I Hardcore O L

RAM'S l IOU'S / PWM'S

Level 1 '-

Sensors Actuators
Level 2

'\ PDB' S

Level 3

Figure 3-65 Bootstrapped Recovery Approach

294

00
EIU'S

O
Soo

0 0 RCUS
O

0O O0
RO'S

i ACU'S O O
0 0 0 Iou's 0 P.M

SRAM'S

0 -- el 2 0

Sensors Level 3 - Actuators

0 0 PDB's
Level 4

Figure 3-66 Distributed Recovery System

295

of this approach is the power economy provided by simpler operation of the

RCU's.

Other approaches to hardcore system implementation proposed in the litera-

ture are discussed in Section 3.1.4 but are not considered as potential

candidates for the reference configuration at the present time because

considerable architectural changes are required for their implementation.

In the configurations of Figures 3-65 and Figure 3-66 recovery of the primary
processor elements can be made by either a simple combinational approach, as in

the COPE system, or a strategy based on the simultaneous switching to a

redundant set of units preselected by off-line tests. High speed of re-

covery can be attained by initially switching to a stand-by processor con-

figuration which is known to be fault free. If this action fails to re-

store normal operating conditions, then a combainational recovery sequence

can be initiated to try other combinations of redundant units.

3.7.6 Recovery Implementation

In the previous section, the requirement for an RCU and an HCU were defined.

The functional requirements of the RCU are:

* Control the redundancy of the primary processor, including:

- 2 - ROM

- 2 - DBS

2 - AU or 2-3 ACU
- 2 - CU.)

* Issue cycle initiation (program synch) signals to ACU periodically.

* Exchange data with ACU A-register: (16 bits is enough)

- Output the primary processor redundancy selection status (for

telemetry).

- Accept the ACU coded status word (indicating proper operation).

* Data exchange occurs periodically upon execution of TRC instruction.

* Accepts direct BITE bilevels from primary processor hardware fault
detection (if any).

* Checks coded status word for correctness of:

296

- Proper coding

- Arrival within a specified time after the program synch. signal.

o Provides for a direct command override of power control

o Provides a reconfiguration bilevel to the HCU

o Accepts power control commands from the HCU

o Provides short-term memory for power outages

o Reconfigures primary processor if coded status word is incorrect

o Contains system 4-phase clock and controls clock bus (see Section

3.6.3)

o Does not need to confirm faults prior to reconfiguring.

o Does not need any power glitch detector. (Reset is now done by the

program synch signal - where needed only.)

o Uses wire - or'ed power control outputs.

The reconfiguration process should proceed in the following steps:

o Switch all primary processor units simultaneously to their standby

blocks. If no prior failures have occurred, this instantly yields a

"new" processor, eliminating the faulty unit, whichever one it was.

o If this is unsuccessful, then iteratively go through all the unit

combinations (16 for the 4 unit types shown). The least reliable

(highest x) elements should be switched first.

The RCU will require a few direct commands (that do not go through the IOU)

from the command system. These may all be bilevels and are:

o Auto/non-auto reconfiguration

o Step AU

o Step CU

o Step DBS

o Step ROM

The RCU could provide direct telemetry (not through the IOU), but this is

probably not needed. If needed, the outputs can be taken as power bi-level

status direct from each primary processor block (plus RCU blocks) into the

TLM system. One might also want auto/non-auto status and "reconfiguration

297

occurring" bi-level telemetry.

There are many functions in the COPE RCU that are not needed with an HCU/

standby-redundant-RCU approach. They are:

* Any voting/differencing circuits

* RAM circuits

- RAM Control Register

- RAM Sequence Length Counter

- RAM Initialization Counter

- RAM Initialization Code Generation Logic

- RAM Page Assignment Logic

- RAM Fault (BITE) or'ing

* Module Power Generation Logic

e RCU Telemetry Circuits

* RCU Command Decoder Circuits

* Power Glitch Detector

e System Reset Timing Circuits

* Transient Timeout Circuits (Fault Confirmation Logic)

* Program Cycle Timeout Circuits

* IOU and ROM-2 Control Registers

* Redundant Clock/ Detectofs/Dividers/etc.

* All 32 Bits of Communication Register to/from ACU.

The resulting (new) RCU (of which there would be two used per system.)is

shown in block diagram form in Figure 3-67.

This new RCU would have approximately 10 discretes, 1 analog IC, 8 MSI and

27 SSI for 46 total parts. The old (COPE) RCU had 3 discretes, 5 MSI and

46 SSI in each TMR section; plus 40 SSI in the voting/differencing section;

plus 24 discretes, 4 analog IC, 2 MSI and 30 SSI in the clock section; for

a total part count of 450.

The functional requirements of the HCU are:

* Controls the redundancy of the RCU's

* Accepts the ACU coded status word, and checks for

- Proper Coding

- Arrival at a rate higher than (the longest reconfiguration time

plus the normal synch,cycle time).

298

Primary Processor

Power Control Signals
Power A
In

On/Off Power RCU AU CU ROM DBS

(from Control Power Control Control Control Control
HCU) ControlRegister , Register Re ister Reister

cl ck

step

Reconfiguration Control Logic
Auto/(on-Auto RCU
Direct --- rgs
Command Control Replacement

Sequence Logic Direct Control Commands Primary
Reconfigure - BITE Fault BIT E Processor

Reconfigure Fault Fault
(to HCU) < Or'ingSignals

o expired
Not

Fault too OK
Clock One- late

Cst Shot ok Comparator

Program

4-phase b-rml-- CSS Synch Communication I
. Signal Register

divider (to ACU's)

RCU Cloc - From/To
Progra status ACU

Sync h C l o c k Loading A_ - register
CSS's Timer Control

D .CSS - Cross-Strap Senders
(Divider)

CSR - Cross-Strap Receivers _ SS

4-phase clock bus

Figure 3-67 RCU Block Diagram

* Changes the RCU configuration if:

- The coded status word is properly coded and properly timed, but

reconfigurations occur: or

- The coded status word is occurring at too slow a rate or remains

improperly coded for too long.

* Accepts the reconfiguration occurring bi-levels from the RCU's

* Operates with its own independent timing/clock.

* Is passively redundant, using TMR with voting

• Provides for a direct command override of RCU control.

An implementation of these requirements is shown in the block diagram of
Figure 3-68.

Reconfiguration ilevel
(from RCU's)

ICS

CSR 16-bit Shift Register CS

coded
Reconfiguration status

=1 word

(from
CSR = Cross-Strap 16 bit Comparator ACU's)

Receivers C Short Time

Analog f- -- Comoarison
esettable OK = 1

One- Shot A _
RCU-1e 3-68 HCU Functional Block

Toggle + Resettable
FF One-Shot

RCU-2

CSR long time

no expiration = 1
reconfiguration should not occur

External Command

p Figure 3-68 HCU Functional Block Diagram

9 300

If one-shot-A expires then a reconfiguration should occur. If not, then

it shouldn't. Gate-C notes when a reconfiguration should not occur and

yet does.

One-shot B detects too long a time to have permitted a reconfiguration.

(Either caused by RCU failure to recognize a fault or to do anything about

it.)

All of the circuit needs to be triplicated and the two outputs (RCU-1 and

RCU-2) need to be voted.

An estimate of HCU part count is 2 MSI and 9 SSI per TMR section; plus 2

SSI for voting for a total of 35 parts.

We saw that the old (COPE) RCU had 450 parts, all of which were always on.

The new HCU and two RCU's have a total of 127 parts, only 2/3 of which are

on at a time. This is 5/18 the parts and < 1/5 the power. This does not

even include the effect of the deletion of the timers from the IOU's.

These savings show a considerable advantage for this approach.

3.7.7 Backup Mode Implementation Alternatives

Providing backup modes for protecting critical functions is a matter of

concern particularly in the case of an autonomous attitude control system

for deep space applications. There are many ways in which backup capa-

bilities can be implemented to bypass the primary system in the event that

the normal recovery procedures fail. Figure 3-69'shows- configuration where

a separate control loop is included to implement a backup mode independent

from the processpr. This approach has been proposed in several control

electronics designs to perform an automatic sun acquisition in the event

that attitude errors exceed a predetermined deadband. The backup deadzone

is usually broader than the deadband used for normal mode operations.

Typically, this backup mode operates with an exclusive analog control

channel driving the-same RCS thrusters used for normal mode control or

acquisition. In addition to implementing control laws for the backup mode,

the analog controller provides fault signals to initiate processor recon-

figurations. The RCU attempts primary system recovery until the backup

mode is disabled. Figure 3-70shows the failure detection structure of the

primary system. Recovery reliability is greatly enhanced by the direct

redundant path provided by Sensor 2 and the controller. This configuration

301

NOTE: Processor And Sensor RedundanclesNot Shown For Simplicity

HCU 3--RCU B iCONTROLLER - SENSOR 2

- ACTUATOR

CONTROLLED
PROCESSOR IOU ACTUATOR FUNCTION

EXECUTIVE OPERATIONAL
SOFTWARE SOFTWARE SENSOR 1

Figure 3-69 Backup Configuration Including Independent

Control Channel

302

IOU

PROC
[

-0

_EXEC
SWE

Figure 3-70 Failure Detection Structure For Primary System Recovery

In The Configuration Of Figure 3-69,

302

is very reliable when separate actuators (i.e., thrusters) are used for the

backup mode. However, when actuators must be shared with other operating

modes implemented by the primary system, many of the advantages of having

a separate controller are offset by the additional complexity of the cross-

strapping elements required.

The configuration shown in Figure 3971 features an independent failure detec-

tion channel providing a backup to the recovery activation facilities in-

cluded in the primary system. Controlled function failures are normally

detected and corrected by means of a bootstrapped recovery sequence as

described in the preceding section. Sensor I is tested by the software by

means of either activation of a standby redundant unit or application of

known stimuli to the system. In case of failure of the processor recovery

function, Sensor 2 will eventually detect excessive deviations in the

controlled function and will develop fault signals to force reconfigurations

until processor operation is restored by means of independent initialization

routines. Actuator operation can be reliably monitored by the software.

Effects of catastrophic actuator failures can be mitigated by providing a

fast recovery capability under software control. Figure 3-72 shows the re-

dundant failure detection structure assumed in the configuration of Figure

3-71. This approach is preferred to the preceding one for the following

reasons:

o Recovery times on the order of 1 sec are easily obtainable. Simul-

taneous actuator and processor failure can be handled without risk

to the spacecraft by even a simple combinational reconfiguration

approach.

o Reliable recovery capabilities are provided by using a boostrapping

technique (under hardware supervision) and a direct failure detection

channel independent of the processor status.

o Power requirements are minimized by restricting the use of passive

redundancy techniques. The only element using TMR is the HCU which

monitors RCU functions only.

o A separate backup mode is difficult to implement reliably. Simple

and effective redundant control modes can be implemented by means of

the processor using fail-safe actuator control techniques.

303

-- ACTUATOR

PROCESSOR I/O CONTROLLED

FUNCTION

EXECUTIVE OPERATIONAL
SOFTWARE SOFTWARE SENSOR 1

Figure 3-71 Backup Configuration With Independent Failure Detection Channel

SENSO1

HCARecover In The Configuration of Figure 3-71./

PROC 1

SENSOP

EXEC.
SWE

SWE

Figure 3-72 Failure Detection Structure For Primary System
Recovery In The Configuration of Figure 3-71,

304

3.7.8 Recommended Approach

The recommended approach to providing fault tolerance capabilities in the

reference configuration is shown schematically in Figure 3-73. The hardcore

unit (HCU) is a triple modular redundant element whose functions are to

monitor overall processor performance and to reconfigure the RCU's in case

of failure of their recovery functions.

Processor operation is organized in minor cycles of equal duration. At the

beginning of each minor cycle, the executive software assembles a status

word which must be transferred to the RCU within a specified time-interval

from the cycle timing interrupt. If the RCU does not receive a correct

word within the acceptance window it initiates reconfiguration of the pri-

mary processor elements. Redundant elements are switched one at a time

until processor operation is restored.

The HCU contains a one-shot multivibrator which is triggered each time a

correct status word is transferred by the processor. The duration of the

one-shot on-time is adjusted to be greater than the maximum expected re-

configuration time. If the one-shot signal falls, reconfiguration of the

RCU's is initiated.

The RCU's generate clock signals and cycle timing interrupts, and manage

the reconfiguration of the processor elements essential to start a boot-

strapped recovery process. The first level of recovery is controlled by

the executive program which, in the figure, is assumed to be stored in

the ROMI's.

Once the primary processor elements enable the fault-free operation of the

executive software, the remaining elements are tested and, if necessary,

reconfigured through IOU facilities.

Rollback points are automatically set by the main program execution schedul-

ing routine which is entered at synchronous intervals established by the

cycle timing interrupts.

More details on the hardware implementation are given in Section 3.7.6

and the software organization is described in Section 3.5

305

o u Tuhrouhh IU

S ----. ------- --- -

S ACU U -0

ROM 2 I

R M 2 P e r i p h e r a l s

ROM I I -ACU - - IOU I I

. i I It O-'RCU -

)HCU

RCU

- I
I i l lI I __ ___

-L--- _ ---- ------- -- -- I

ig 33 R n F Tolerant _Ogi_ z
RAM

Figure 3-73 Recommended Fault Tolerant Organization

3.8 LSI Applications

Large Scale Integration (LSI) was defined earlier as the use of integrated

circuits of "large" capabilities, containing the equivalence of hundreds

of gates. LSI is a technology that may be applied to bipolar or MOS cir-

cuitry. The limitations to the application of LSI are:

o Number of leads. The packages available for integrated circuits

have 14, 16, 24, 40, 64, etc..leads available, with the package

physical size growing with lead count. Often, a primary limit-

ation of the circuits implemented with LSI is the number of leads

necessary for inputs, outputs, power, etc.

o Power dissipation. The amount of circuits put on to one LSI

chip can be limited by the circuit power dissipation. This is

particularly possible with LSI circuitry. In any case, heavy

current driving requirements should not be implemented with LSI.

o Yield. As the amount of circuitry on a chip increases, the yield

of good chips goes down (increasing the cost). Below 5% or so the

yield is not economical. This is often the most important limit-

ation onLSI "size". Fortunately, this is the area where improve-

ment is being made most rapidly.

o Cost. This is the overriding limitation of LSI. Each new LSI

circuit configuration costs a considerable amount of money, just

to make the unique masks, and to qualify and prove the design, no

matter what the quantity of the order. Unless the new part has

a very general or large quantity use, this translates into a very

large cost per part; in most cases larger than the cost of the

equivalent SSI and MSI parts (including their packaging) that

are replaced.

The advantages to the use of LSI are many. Some primary ones are:

o Reduction in power. Although putting the exact equivalent

circuits into LSI does not reduce power in itselfusually a

slight reduction can be effected since less (equivalent) gates

307

can be used. Also, often the impedances can be better controlled

(optimized) relative to speed and driving capability, also re-

ducing the power. Sometimes the MOS and bipolar parts can be

combined in the same chip, using MOS for the logic or memory

functions and bipolar for interfaces.

* Reduction in size and weight. One LSI chip takes much less board
space than its equivalent in MSI/SSI. This reduces the volume

and weight of the total assembly.

* Improvement in reliability. To a large extent, the reliability

of an integrated circuit is proportional to the number of leads,
since lead bonding seems to be the weakest link. Because of this

an LSI part is (or should be) intrinsically more reliable (i.e.
lower bit failure rate) than the MSI/SSI it replaces by a factor

of 5 to 10 or more times. This is probably the most important

advantage of LSI.

* Cost savings. If the quantity usage of an LSI part type is high

enough to ammortize its development cost, then LSI usage can
offer definite cost savings. Beyond the.development cost, the

per unit cost should be proportional to lead count and yield

achieved, with LSI parts costing only a few times the cost of
MSI/SSI parts (and much less than the equivalent MSI/SSI). Added

to this are the cost savings of less circuit-level design time,

less product engineering (packaging), fewer manufacturing opera-
tions, etc.

Wherever the advantages outweight the disadvantages, LSI should be used.
The disadvantage is primarily cost (although schedule, difficulties of
qualification, lack of experience in use, etc. could also be important),

3.8.1 Commercial Parts

The LSI parts fall into two categories: those parts that have already been
developed and that can be ordered "commercially" and those that use existing
technology, methods and processes, but must be designed and masks must be
made, etc. Parts using new processes, not yet proven, are beyond the scope
of this report.

308

The main limitations on the use of existing LSI parts are:

o Although there are many LSI parts in existance, most are not

applicable to high-quality spacecraft programs. Most have

been developed for low-cost commercial use, including calcu-

lators, cameras, automobiles, TV, etc. and are simply not

usable.

o Existing "computer-type" LSI parts (other than those for pocket

calculators) are usually designed for ground-based usage and

will not take the environmental extremes.

o The high-volume commercial vendors are not interested in the

low-quantity, high-quality market because there isn't enough

money there to make it worth all the trouble.

Fortunately, there are some LSI parts available for use, and they are the

most important ones, 'the memories. As discussed in Section 3.4.7, many

LSI memories are now available and rapid progress is being made in bringing

out new types. Some special-purpose LSI chips have also been developed,

but they are usually too special purpose for anyone but the original

developer to use and are not generally available. An exception may be

some micro-processor chips (see Section 3.8.3), being developed under

government-supported research programs.

3.8.2 Custom Parts

Within the current technological limitations, which really are non-

constraining, an enormous variety (infinite.) of LSI part types could be

built for any situation where the advantages out-weigh the cost of devel-

opment. It clearly does not pay to invest any money in memory LSI chips,

where other influences are already doing very well in developing new,

more dense, lower power parts.

309

Custom LSI parts are justified for spacecraft use where:

* The parts have a sufficiently general usage that the quantity
of use is high (thus lowering the cost), and the advantages of
use are multiplied by those quantity numbers. Possible examples
are:

- Cross-strap circuits, bus or conventional
- Power (redundancy) control circuits

- Voting circuits
- Serial data sending/receiving circuits

- .Check byte former/checker circuits

These circuit examples might be used not only throughout the
control system, but in other spacecraft systems as well.

* The advantages of use are overwhelming or of so much importance
relative to cost. Most likely, such usage will be in the control
processor, in the ACU or IOU. Examples include microprocessors
(see Section 3.8.3) and microprogramming (see Section 3.8.4).
In most of these usages, the quantity of use is low.

* The parts have a high probability of use on other (future)
programs. Such predictions are, at best, a risky business.

Some recent approaches have been devised to reduce the cost of custom LSI
for the replacement of MSI/SSI logic circuitry. Three approaches have sur-
faced of interest. Each seeks to solve the problem of offering a low-cost
LSI replacement for complex random logic. The approaches are:

* Use of ROM chips

* Use of Programmable Logic Arrays

* Use of Configurable Gate Arrays

These approaches are somewhat interchangeable, but each with its own
advantages.

310

A conventional ROM is organized as having 2 words of M bits each. It
receives n address lines into an address decoder. Each address com-

bination selects one word, which appears on the M output lines. Each of
the 2n decoder states addresses one word line of a matrix of 2n x M
intersections. Each intersection may be programmed (via mask or "PROM"
approach) with a 0 or a 1.

Random logic can be simulated by the ROM by programming the output lines
to have the proper correspondence to the input lines. One output word
(set of lines) can be addressed at a time.

Although use of ROM's for this purpose is somewhat limited, often con-
siderable logic savings can be realized since ROM's have become relatively
low-cost. Also, if PROM's are used the advantages of "field" programming
allow considerable versatility and very quick response time.

The ROM offers rigid, exhaustive, non-programmable data addressing, with
programmable data. The Programmable Logic Array (PLA), on the other
hand, provides more flexibility, with not-necessarily exhaustive, separate-
ly programmable data addressing and data.

The difference between the ROM and the PLA is in the address decoding.
In the PLA, the address decoding is programmable, as is the data matrix.
Each address line (and usually its complement) has an intersection with
each of the word lines in the address matrix. Each of those word lines has
an intersection with each of the output lines in a data matrix. The PLA
might have n input lines, m output lines, but X word lines (with X not
constrained by n or m). A given word line may be selected by any one
input or by minterms of inputs. Because each word line can be selected
in general by more than one minterm, word lines are sometimes termed
product lines.

Because each word line may be selected on a general product term basis
rather than on just a minterm basis, it is possible to select two or more
output words at the same time. This concurrency occurs when two or more
word lines have product terms which share at least one minterm. Such
concurrency can not occur in the ROM.

311

Typically PLA's are available as mask-programmable TTL or MOS LSI chips.

Typical parts may also contain flip-flops which may receive inputs from
the data matrix and output to the address matrix. Some typical available
parts and characteristics are indicated in Table 3-15.

TABLE 3-15

Typical Available PLA's

Characteristic Part A Part B Part C

Inputs 14 17 13
Outputs 8 18 10
Word Lines 96 60 72
Flip-Flops 0 8 10
Pins 24 40. 28
Power (mw) 550 300 300

Note that as each input variable is added the size of a ROM is doubled.
This is because the decoding is exhaustive. All the product terms are
generated and this soon becomes prohibitive. For example, part B in
Table 3-15 , if implemented with a ROM would take over 218 million bits,
which is a ludicrous size for any ROM (if the PLA uses its full capacity).

PLA's are programmed by writing the outputs in terms of the inputs, ex-
pressed as sums of minterms. One PLA of the sizes indicated in the table
can replace hundreds of gates and a great many MSI/SSI parts.

Another LSI logic replacement approach is the Configurable Gate Array
(CGA). This has been developed by TRW as a universal array of gates
which features quick turn around time from design to hardware and low
initial design cost. Discretionary means for configuring the logic gates
at the component level in addition to the intraconnection has been pro-
vided.

The TRW CGA consists of 120 4-input gates located internally within the
chip, and 60 2-input gates and 60 inverters located around the periphery
at the 60 pad locations. The logic power of this assembly is greatly enhanced

312

by the gate configuration, i.e., the gate is not of a fixed type but may

be made.into NAND, NOR, etc., to fit the specific logic task at hand. The

CGA uses the high yield 3D process and EFL circuitry, but the gate functions

emulate series 54 and series 54L TTL. Therefore, the logic designer need

only use familiar methods to design with the CGA.

To expand upon this simple scheme, the configuration of the gates is carried

out by discretionary connections made at the component level so that the

gates may each be configured into a whole host of useful types. Intra-

connection between the gates and the pads is also retained as discretionary.

The term "discretionary" is used here in the sense that it is at the option

of the designers through computer aids to define the intraconnection paths

and also the type of gates which are connected. The gates used internally

within the chip can be configured to form any noncomplemented Boolean

function of four (or fewer), variables. One hundred and two such configura-

tions exist within the sets:

o NOR

o NAND

o AND-OR-INVERT

o AND-OR-AND-INVERT

o OR

o AND

o AND-OR

o AND-OR-AND.

Each gate also has additional options for:

o High level logic

o Low level logic

o Totem-pole outputs

o Open collector output

o Tri-state control output for inverted output logic gates

o Resistor terminated outputs

o Low power option, low speed, series 54L emulation

o High power option, high speed, series 54 emulation

o Passthrough or passive option wherein the gate space is used to
facilitate intraconnection within the chip

o Unpowered, unused gate option.

313

All options, conftgurations, and intraconnections operate on the principle

of defining where metal to silicon contacts are made. Therefore one mask,

the contact mask, contains all information necessary to configure the en-

tire LSI array to the application. All other masks are fixed and not

necessary to change from application to application. What this results in

is a rapid turnaround time for an LSI with low nonrecurring cost. How-

ever, this LSI is more limited in electronic function capability than a

custom LSI design and uses somewhat more power per gate. The limit on

electronic function capability can be estimated from the following list of

available pads and gates:

* 120 4-input gates

* 60 2-input gates

* 60 Inverters

* 60 Input-output leads or pads

* 4 Power and ground pads.

Fewer gates are needed in the CGA than in fixed gate types. CGA wafers

are processed and stockpiled up to the contact mask. Once the unique con-

tact mask is received in the fabrication area, the requisite number of

wafers are removed from stock and the processing is completed within

four working days. Variability in the time required to package, test,

and deliver LSI chips is based on inspection and test requirements,

but these are known routines subject to reliable scheduling.

Use of either PLA's or CGA's in the COPE ACU could serve to reduce the

current IC count from approximately 110 parts to 10 to 15 parts, with a

small power saving. This assumes no change in topology (micro-programming

processing, etc.). Lesser savings could also be achieved in the IOU.

314

3.8.3 Microprocessors

A microprocessor is a processor organized around the use of LSI chips.

Most microprocessors are general-purpose digital computers designed as

replacements for minicomputers or for use in instruments or a variety of

consumer products.

The "one-chip" microprocessors put both control and arithmetic on one

chip, then use other chips for memory and 1/0. The larger, multiple-

chip microprocessors use one chip for control and break down the arithme-

tic into modules, each on a chip.

The one-chip microprocessors are usually 4 to 8 bits in word length.

Most 16-bit microprocessors use 5 or more LSI chips for arithmetic and

control. (One chip per 4-bit byte, plus a control chip). The control

chip may be organized with microprogramming. (See Section 3.8.4).

Existing microprocessors now contain such features as:

o Compatible peripheral interfaces

o Powerful, large (>50) instruction sets

o Ability to address large memories (>32K words)

o Priority interrupts

o Subroutine nesting

o Direct memory addressing

o Large I/0 addressing capability

o Up to 16 bit word length

o Multiple general-purpose registers

o Microprogramming

The faster microprocessors have speed capabtlities suitable for use on

spacecraft control systems. For many of the devices restrictions on.pin

(lead)count often lead these microprocessors to use serial data transfer

315

and/or various tricks for addressing or memory/ACU address and data
exchange. These tend to slow the operational speed of the processor
down. Both parallel address and read/write (or I/O)buses are advantageous.
The processor may be byte organized, however.

Microprocessor chips are also available, wired together onto cards, in
a variety of configurations. Most of the currently available micro-
processor LSI is in MOS, but bipolar versions are being developed.

It is interesting to note that just as Polaroid builds cameras so they
can sell film, and Mattel produces dolls so they can sell their clothes;
most microprocessor chips have been developed by vendors so they can sell
more memory chips (because that is where the money is). No such impetus
apparently exists in the aerospace microprocessor field.

All available microprocessor chips(that the authors are aware of) are
designed for the commercial field and do not have the high environmental
resistance, broad temperature range, or qualified status needed for
spacecraft usage. Some companies (including RCA, TRW and Honeywell) have
built ACU's completely from LSI, although not necessarily for control
system use.

The TRW microprocessor is called Multi-Purpose Processor (MPP). It was
developed primarily for signal processing, real-time data processing and
secure communications systems (and not for control systems). It is
microprogrammed and has considerable I/0 and memory flexibility. It is
quite fast, using triple diffused bipolar LSI, is 16 bits parallel in
arithmetic organization and has short instruction execution times of 300
nsec. The MPP uses 11 chips of 5 types for its ACU. The Honeywell
microprocessor has about the same number of chips and other capabilities,
but is much slower.

No existing microprocessors can be applied directly to spacecraft control
system processing (with or.without fault tolerance) for a variety of
reasons:

316

o Reliability organization. No existing micro-processor is

organized for a sufficiently low level of redundancy. (Which

after all, does not have to be as low as for a "normal"

processor because of the lower failure rates per function.)

None of the micro-processors use cross-strapping circuits for

inter-block fault isolation (although this might be done

external to the LSI chips).

o Environmental Considerations. Design for spacecraft environ-

tal extremes is usually lacking.

o Quality. Control of processes, qualification, etc. for high-

reliability programs is missing in the part production.

o Fault Tolerance. No consideration has been given to fault

tolerance in either hardware or software.

The preceding does not mean that microprocessors could not be designed

to meet all of the criteria necessary for a spacecraft control system

fault-tolerant processor. It only means that this has not yet been

done. If sufficient money were available, it should be done. Such a

processor would:

o Require about 10 chips for the ACU and 3-5 for the IOU.

o Use the same memories as a "conventional" processor (although

the non-LSI parts of the RAM, ROM and PWM could also be made

using LSI PLA's, CGA's, etc.).

o Reduce the size, weight, and volume of the processor consid-

erably.

o Increase the processor reliability.

No particular unique design changes appear to be necessary in the soft-

ware or hardware organization to convert the COPE-type processor to an

LSI micro-processor. All aspects of the preceding discussions of Section

3 appear to remain valid. It would be desireable to also convert the

RCU and HCU to LSI. This might be done in each RCU for from 3 to 7 chips

and in the HCU for 1 to 4 chips, depending on partitioning, etc.

317

Note that there are no technical restrictions to building a spacecraft

control system fault-tolerant LSI microprocessor. The only restrictions

are money and desire.

3.8.4 Microprogramming

Microprogramming may be used in either a microprocessor or a "conventional"

processor, or it may not. Microprogramming refers to all of the following

specific features:

* Use of registers in the ACU that are general-purpose.

* Ability to "easily" change the micro-instruction set.

* Ability of a single instruction from the program to call up

complex ACU operations, involving smaller programs or sub-

routines, all intrinsic in the instruction, and totally re-

siding in the ACU. For example, a multiply, or sin X or

arc tan Y, etc. may be called up by a single program instruction.

Some processors that are not microgrammed contain some of these features.

For example, COPE uses single instruction multiply and divide. All of

these features can also be differentiated by degree (number of registers,

ease of microprogram change, number and complexity of operations, etc.).

Microprogramming can offer some or all of the fo.llowing advantages:

* Reduction in software programming time and effort. Complex

arithmetic computations can be done with fewer instructions.

More and more-general-purpose ACU registers can simplify data

manipulations and reduce access to RAM. This can also increase

processor effective speed.

* The instruction set can be changed relativly easily from program

to program. Actually this is not much of an advantage and has

little usefulness relative to its cost (new LSI chips).

* It may save parts in the ACU. This is really a savings from use of

LSI and not just from going to microprogramming.

318

For purposes of a controls processor, the replacement of the control logic

in the ACU could be done (relative to COPE) with LSI at a considerable

savings in parts. At the same time, the changeover to general-purpose

ACU registers (and their possible increase in numbers) would be a good idea.

Consistent with op. code quantity restrictions, some more operational

instructions could be added at the same time with no hardware penalty.

All of the advantages could thus be obtained.

The COPE ACU now has the following relatively special-purpose registers:

o A register

o Q register

e Memory register

0 Index register

o Data base register

0 Instruction register

o Address register

All of these but the last two could be made general purpose. An expansion

in the number of these registers could also be made (which is like moving

some of RAM into the ACU). All general-purpose registers would require

access to:

0 Adder (arithmetic element) input and output

o Memory bus input

o Memory bus output

o Any other register input or output

o I/0 bus (if used).

The use of PLA's or CGA's for the control logic replacement is one possible

approach. The logic could also be replaced by custom LSI chips in a

microprocessor approach. Again, money is the restriction to such changes.

319

4.0 SYSTEM DESCRIPTION

This section of the report summarizes the ,results of the previous sections

in the form of a recommended system approach. The concentration in this
recommended system is on the electronics, both processor and peripheral.

This section first treats the resulting system as if it were developed

today, without the infusion of a large amount of money into development
of custom LSI parts. The use of LSI is then treated, pointing out the
changes (improvements) that might be made. As previously stated, the
limitations to the reduction in system electronics size, weight and
power are economic, not technological.

All of the conclusions of the previous sections will not be repeated

here. The reader is advised to read those sections to determine the
"why" of the choices made. Sections 2.0, 3.2 and 3.3 particularly

point up the mission requirements and constraints, the control system
needs and equipment, including modes, accuracies, etc. The other
portions of Section 3 provide tradeoffs and recommendations on a variety
of pertinent subjects.

4.1 Current Technology

Current technology here refers. primarily to the integrated circuits
used in the electronics. In both this and the succeeding section, all
other parts of devices are also assumed to be those already developed
and available, (i.e. gyros, reaction wheels, sensors, etc.)

The circuitry considered in this category are those parts available now,
that can be bought in quantity, made under high-quality programs, and
that have been/or could be) qualified for spacecraft use. This includes
existing (non-custom) LSI parts.

This section will start from the baseline COPE processor and show those
changes necessary (or recommended) as a result of the study, to produce
a good, viable fault-tolerant control system design for long-life
interplanetary missions.

320

The concentration will be on the processor, with a consideration of

the peripherals (sensors, actuators and supporting electronics) only

from the standpoints of:

o their effect on the processor (I/0, speed, etc.)

o their effect on the system reliability

o their effect on the system requirements (accuracy, etc.)

The peripheral size, weight, power, etc. will not be discussed. On the

other hand, all of these characteristics of the processor will be

summarized.

4.1.1 Performance Requirements

Some of the requirements developed in previous sections are again

summarized below.

The control implementation and processing requirements are assumed as

discussed in Section 3.2.1. This results in the functional requirements

of Section 3.3.1. Important conclusions of this section and Section

3.3.2 are that the processor needs:

o A moderate speed of 100 - 150 kops (>64 kops required)

o An instruction set similar to COPE with double precision operations.

o 16 bit accuracy

o Memory requirements of

- Program Memory (not including executive) > 2255 words

- Scratch pad memory > 452 words

o Short instruction time < 8 psec.

The input/output requirements of the processor were developed in Section

3.3.3 and are:

o Analog Inputs (12 bit A/D) - 14

o Serial Digital Inputs - 34

o Serial Digital Outputs - 18

321

0 Bi-level Inputs - 8

0 Bi-level Outputs - 20

* Command - Single, 32 bit buffer also see Section 3.4.5.3

0 Telemetry - Dual, 256 bit buffers

Section 3.4 discussed the tradeoffs in the processor (hardware) design.

Some of the condlusions of that section were:

* 4-bit byte-organized arithmetic is optimum

* The 16-bit word length of COPE is adequate.

* Fixed-point, fractional two's complement arithmetic is

satisfactory.

* The COPE instruction set is adequate and quasi-optimum (see 3.4.2)

* The only interrupts needed are internal (i.e. cycle timing and

fault interrupts)

* Discrete event timing can be accomplished using the cycle timing

interrupts. (No IOU timers needed.)

* No IOU discrete inputs need to be provided.

* Analog IOU outputs are unnecessary.

* Serial I/O interfaces should be accomplished as described in

Section 3.4.5.2, with the (peripheral) circuitry of Figure 3-38,

3-39 or 3-40.

* The cross-strapping should be done by:

- Bussing for all processor internal paths, using the

circuit of Figure 3-16, with power gating.

- Bussing for clock distribution and serial I/O lines,

using the circuit of Figure 3-15, without power gating.

- Conventional means, using the circuit of Figure 3-14 for

all peripherals, commands, telemetry, etc.

- Duplication (Figure 3-37) for all other I/O.

- No analog cross-strapping is needed.

322

o A need for three memory types was defined:

- ROM for executive program storage

- RAM for read/write storage

- PWM for protected, variable program read/write storage.

o Solid-state memory using existing LSI is much preferable to other

memory types.

o Static MOS or CMOS memory is to be preferred for low power

consumption for RAM or PWM.

o Addressing, read and write of memories should be parallel.

o RAM and PWM should be semi-or non-volatile.

o The ROM, ACU, IOU, RCU, HCU, etc. are currently best accomplished

using bipolar TTL parts.

o The topological architecture of the COPE ACU is adequate, but

might be improved by:

- making the registers more general

- adding registers

- adding microprogramming

Section 3.5 discussed the tradeoffs in the processor software design,

particularly from the standpoint of organization for fault tolerance.

It was concluded that a modular program structure with an executive was

essential, with sequential program flow. (This was also discussed in

Section 3.7). Each of the applications modules is essentially independent

of the others, easing development, testing, and augmenting fault detection

and roll back processes.

The executive should be organized synchronously with an asynchronous over-

lay as discussed in Section 3.5.3.4. A representative executive structure

was described in Section 3.5.4 and sized as requiring 593 words in ROM,

133 words in RAM, 115 words in PWM (in Section 3.5.6).

323

Software fault detection techniques were suggested in Section 3.5.5.

Section 3.6.2.1 covered hardware fault detection (in the processor).

The former are sized within the words (and speed) requirements listed.

The latter are seen to be unnecessary, even to the limited extent pro-

vided in COPE. Section 3.6.2.2 covered hardwareself-test (BITE) in

the peripherals. This was also seen to be virtually unnecessary.

Section 3.6.1 discussed the use of error detection coding in both data

and instruction words. Although use of a check byte is attractive, it

is not necessary and so is not recommended. Retention of the parity bit

in RAM(and its use in PWM) is probably advisable. The parity bit should

also be added to ROM. Parity checking should be moved to the ACU, with

the parity bit brought across the data bus. This should aid instruction

error detection.

The redundancy management should be accomplished by using the bootstrapped

distributed hardcore system discussed in Sections 3.1.4 and 3.7.5 and

shown in Figures 3-22 and 3-73. This results in significant hardware

savings, as discussed (together with the new RCU and HCU requirements)

in Section 3.7.6. Figures 3-67 and 3-68 show the new RCU and HCU block

diagrams.

The redundancy management would result in control as follows:

* Centralized control (in a power switching electronics ala Figure

3-7) for all peripherals.

* Control through the bilevel outputs of the IOU for RAM, PWM

and PDB.

* Control from the RCU for ACU, IOU, ROM and DBS.

* Control of the.RCU's from the HCU.

All processor elements would use the (decentralized) power control

circuit of Figure 3-6. All switching would be done using latching relays.

The requirements can now be expressed in terms of the equipment.

324

4.1.2 Processor

The processor requirements summarized in Section 4.1.1 can now be trans-

lated into hardware requirements. Using COPE as a baseline, these re-

quirements can be translated into design changes for each element type,

as listed below. The aggregate of these changes gives birth to a new,

improved processor, called COPE -2. The changes are:

o ACU - Add parity checking in instruction decoder.

- Go to full parallel memory read-write logic & bus.

- Delete detection of illegal micro-timing states,

instructions.

- Divide ACU into halves (AU & CU) for redundancy

o IOU 4 Delete all (28) discrete inputs

- Delete the program cycle timer

- Change the I/0 requirements as follows

- Analog inputs, from 32 to 16 (needs 14)

- Serial input word gates, from 32 to 40 (needs 34)

- Serial output word gates, from 16 to 24 (needs 18)

- Bilevel inputs, from 64 to 16 (needs 8)

- Bilevel outputs, from 80 to 32 (needs 18, plus

8 for primary processor power control)

- Divide IOU into halves for redundancy.

o ROM - Add parity bit generator (increases to 17 bit word)

- Modularize ROM as:

- ROM-1, 1024 words for executive

- ROM-2, 2048 words for AM's, etc.

- Use 512 x 4 chips for ROM-2, 256 x 4 for ROM-1.

o RAM - Use CMOS design (as developed for DPA-2)

- Add parallel read/write bus interfacing

- Add semi-volatility circuitry

- Modularize RAM as one 1024 word module

- Use 1024 x 1 chips

325

* PWM - Modify the above RAM design by adding write protection

as discussed in Section 3.4.7.2.

- Only one 512 word PWM required, but use 1024 words to

utilize 1024 x 1 chips (same as RAM).

* RCU - Use new RCU requirements as presented in Section 3.7.6

and Figure 3-67.

* HCU - Use the HCU requirements as presented in Section

3.7.6 and Figure 3-68.

* Software - Redesign the software to provide the proper executive

and modular organization, incorporating the suggested

fault detection features.

These changes result in processor elements having the characteristics

shown in Table 4-1: (All parameters are per element (module).)

In this table, the assumption is made of the following failure rates:

ANA (analog IC), 50 bits; LSI, 40 bits; MSI, 15 bits; SSI, 10 bits; and

DIS (discretes), 2 bits average. The volumes are based on a modular

packaged configuration of 6 x 8 inches by a module (quantized) thickness

based on the number of boards required. Multi-layer boards have been

assumed (and flat-paks for the IC's).

There is a choice for the ACU and IOU as to whether they should not be

split in half (and use dual standby redundancy (1/3)) or whether they

should be split in.half (with approximately a 15% penalty in parts),

and use single standby redundancy. A comparison of the overall

processor parameters for both configurations is given in Table 4-2.

The "tnsplit" case is worse on volume and weight, but better on power,

part count, reliability, and cost. As always, the choice depends on what

is important to the chooser.(All other redundancy is 1/2, except for the
HCU,.which is TMR.)

326

TABLE 4-1

COPE -2 Characteristics of Elements

Parts Count

Elemer,t Volume (in) Weight (lb) Power (w) ANA LSI MSI SSI DIS TOTAL x(bits)

ACU 77 1.6 6.4 - - 70 168 13 251 2756

or AU 38 0.9 .4.0 - 39 99 10 148 1595

and CU 38 0.9 3.3 - - 37 92 10 139 1495

IOU 48 1.0 5.5 11 2 39 89 154 295 2413

or IOU-I 38 0.7 3.2. 6 - 22 53 30 111 1055

and IOU-2 38 0.7 3.2 5 2 23 51 130 211 1280

ROM 1(1K) 38 0.8 0.5 - 16 1 21 40 78 945

ROM 2(2K) 38 0.8 0.6 - 16 1 23 45 85 975

RAM (1K) 38 0.8 1.0 - 17 3 33 40 93 1135

PWM(1K) 38 0.9 1.2 - 17 9 37 45 108 1275

RCU 38 0.7 2.5 1 - 8 27 10 46 460

HCU 38 0.7 1.0 - - 6 29 - 35 120*

* - per TMR section

TABLE 4-2

COPE-2 OVERALL PARAMETERS

3 Total Reliability
Configuration Volume (in) Weight (lb.) Power(W) Parts 7.5 years 10 years

ACU, IOU unsplit 793 16.5 18.7 1947 0.977 0.959

1/3 redundancy

ACU, IOU split 722 15.1 20.5 2073 0.958 0.928

1/2 redundancy

As a comparison, the existing COPE design (with 1/3 unsplit ACU and IOU

and comparable memory size would have the following parameters:

o Volume - 863 in3

o Wwight - 14.6 lb.

o Power - 34.3 W

o Parts - 2916

o Reliability 7.5 years 0.968

10 years - 0.941

It should be noted that COPE is not fault tolerant or autonomous to the

same degree as the projected COPE -2.

4.1.3 Peripherals

The peripherals are relatively little affected by the fault-tolerance

requirements, but they must be designed for a small enough element size

to meet the reliability requirements, with the proper interfacing to/

from the IOU, and with fail-safe features designed into the electronics of

the RWA and thruster valve drivers. Except for the latter requirement,

this should little change the design of any existing equipment.

The inclusion of back-up electronics is optional and has not been con-

sidered in the reliability calculations here. It is considered that the

FSS, STA and IRU are functionally redundant and this has been considered

in the reliability calculations.

The following failure rate assumptions have been made:

o WASS - Four-portions, each 1 of 2 redundant, each at 200 bits.

o Accelerometers - 1 of 2 redundant, at 1,000 bits.

o Other Sensors - Functionally redundant to each other.

- Gyro -7 7.000 bits per axis, 3 of 4 redundant

- FSS - 2,000 bits, 1 of 2 redundant

- STA - 3,600 bits, 1 of 2 redundant

329

0 RWA - 1,000 bits per axis, 3 of 4 redundant

* Actuators (scan and TVC) - 1,000 bits per axis, 4 axes, each 1 of 2

redundant

• Valve Drive Electronics - 1,000 bits, 1 of 2 redundant

(This is very conservative, since the valves driven are also

redundant.)

* Power Switching Electronics - 500 bits, 1 of 2 redundant.

Using these assumptions, the reliabilities of the peripherals is 0.976 for

7.5 years and 0.957 for 10 years. Combining this with the processor

reliabilities (the unsplit ACU/IOU case is assumed) gives overall control

system reliabilities of 0.954 for 7.5 years and 0.918 for 10 years.

Further redundancy could improve these figures at the expense of extra

volume, weight and cost, Note that (for this example) the processor

and peripherals have approximately equal reliability.

4.2 Advanced Technology

Again, to repeat what was said earlier, what can be accomplished by the

incorporation of custom LSI ls limited by the money one wants to spend.

The benefits of reduced size, weight, power, parts count, etc. (and

improved reliability) are achieved at an increasing cost to develop the

necessary new parts. The benefits are almost proportional to the

additional dollars spent.

There is nothing apparent at this time that would drastically affect the

nature of the organization of the system by the incorporation of generally

applied LSI. The x's of the elements would come down, improving the

system reliability (or alternatively, the number of elements could be

reduced, with the same result).

The arithmetic structure, byte-size, memory requirements, basic

architecture, program modularity, executive organization, etc. would probably

not change. The same interfaces would exist between elements, whether in

the processor or outside it.

330

The peripherals would be affected less than the processor. LSI circuits

could be developed for the receivers/senders for the serial IOU interface.

Power limitations would probably prevent major changes/improvements in the

actuator electronics. Certainly the sensor electronics might be improved

with LSI.

An ordering of the incorporation of further LSI into the system design (in

order of approximate improvement vs. cost ratio) might be useful. This is

very subjective, but is approximately correct. The LSI improvements (from

the COPE-2 processor configuration described in the preceeding section, are:

o Use of PLA's or CGA's to reduce the logic in the ACU (and incorporate

microprogramming). Approximately 110 IC's could be replaced by

10 to 20 LSI parts, also saving about 1 watt.

o Development of an LSI part for power-gated bus sending and

ceiving.

o Development of an LSI part for peripheral sending/receiving

registers.

o Incorporation of those portions of the ROM, RAM and PWM that

are not now LSI into LSI chips.

o Development of micro-processor-type LSI chips for the ACU.

Expefience (such as on MPP) indicates this would require 10-12

chips of about 5-6 designs.

o Development of IOU LSI chips, which could drastically cut this

part count, Note that this can only work to a point, however

since the lead restrictions of the LSI are not compatible with

the large number of inputs and outputs of an IOU.

331

0 Development of an RCU set of LSI chips. The clock might be one

and the remainder of the RCU 3-4 more.

* Development of a single-chip TMR LSI HCU.

Now if all these new LSI chips were developed (30 to 40 of them), we would

have a processor (call it COPE-oo) that might have the following para-

meters:

* Volume - 200 in3

* Weight - 6 lb

e Power - 7 w

e Parts Count - 200

* Reliability - 0.98 for 10 years

The question remains - is it worth it? The authors believe that in the

limited-funding aerospace environment of today the answer will be no.

What about the possibility of "someone else" paying for the development

of parts that can be used?

Commercial LSI part development that can be used in a fault tolerant

control system are not too likely, beyond the memories already developed.

The requirements that "we" need are too special and are not needed in the

commercial applications.

The military offers better hope, particularly with regard to micro-

processor LSI. Although such parts do not now offer the necessary

fault-tolerant/redundancy, etc. features, it is hoped that they will

eventually, since the military needs are quite similar, even though

their spacecraft are earth-orbiting.

332

One last possibility should be mentioned. Someday a single-chip

microprocessor LSI part of extremely high speed (allowing serial input/

output/addressing, etc.) will be developed., If such a part were avail-

able, the basic structure of the system, as discussed in this report,

could change. The most likely changes would involve use of many of

these microprocessor chips, distributed throughout the system in a

multiprocessor-like arrangement, operating mostly independently of

each other, but redundant to each other. Such a development could

effect a quantum improvement in system parameters, without a corres-

ponding cost increase.

The trend is already away from the use of a single computer on board

a spacecraft to handle all systems to the use of optimized computers in

each system, asynchronously tied into each other (as was a ground-rule

of this study). This evolution will undoubtedly continue until

eventually each system uses several micro-computers in an analogous

manner. The future is always hard to predict and we must act now

with what we have available now.

333

5.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

This section of the report views the study in perspective, providing a brief

summary of the conclusions reached and recommendations for future studies.

5.1 Summary and Conclusions

The subject is a very dynamic one and progress is being made very rapidly

in both the hardware and non-hardware arenas. For the hardware, the direc-

tion is fairly predictable; that of providing more and better LSI parts,

increasing the capability of each chip, and reducing size, weight and power,

while increasing reliability.

For the non-hardware activities, the possiblities are not so predictable.

Non-hardware here implies not just the software, but particularly the sys-

tem design - the architecture and organization of the system.

In the modern design of computers, or any other complex system, the dis-

tinctions between the system, the hardware, and the software are becoming

ever more diffuse. If the system is to be fault tolerant, then the over-

lap is almost total.

It is of the utmost importance that such systems be designed as systems,

from the beginning. The requirements of fault tolerance must be considered

from the very start. The retrofitting of fault tolerance in an existing

design is very difficult, if not impossible.

Yet, from the standpoint of spacecraft attitude control systems, we have

seen that there is much in the "old" systems that does survive, almost un-

changed. The sensors, actuators and their supporting "peripheral" elec-

tronics can generally remain the same if certain rules are observed:

* The size of the redundancy elements must be suitably small (see

Section 3.1.1)

* The redundancy blocks must be designed for independent failures.

* The redundancy blocks should be controllable by the processor.

* The interfaces should preferably be serial digital with the processor-

I/O (but do not have to be).

* The actuators (and their electronics) must be designed for fail-safe

operation (see Sections 2.2.5 and 3.2.4).

334

o The interfaces should be asynchronous.

o Fast servo loop closures should be performed in the peripheral elec-

tronics, not in the processor.

o No particular peripheral BITE needs to be added.

o The use of a back-up electronics mode/equipment is optional.

One cannot, however, just take an existing computer and make it do the job.

Neither in its redundancy organization, nor in its program organization is

it suited for the task. Existing computer/processors are characterized by

a monolithic reliability structure not suited to long life and by a hard-

ware/software organization not suited to fault tolerance.

The processor, therefore, is the key element. Whether one starts from

"scratch" or uses existing "good tries", such as STAR or COPE, redesign

and optimization will be necessary. Section 4 provided some alternatives,

based on the TRW COPE processor.

It was seen that the necessary reliability criteria could be met by the

system. That is, reliabilities > 0.9 could be achieved for 10 years for

reasonable size, weight and power. This can be done now, with existing

"off-the-shelf" parts, components, sensors and actuators, etc. The in-

fusion of more money could create new LSI parts, saving size, weight, power

and improving the reliability.

The most important part of the study and the most important conclusions

are in Section 3.7. Some of those conclusions are:

o General fault tolerance can be achieved relatively economically.

.o Recovery times of < 1 second can be obtained.

o The system must be structured so that the number of faulty behavior

patterns is limited.

o Adjoined processes (such as timing) are the best indicators of

faulty operation of a primary process.

o The testing for fault correction must be exhaustive, but this can

only be accomplished if the number of fault patterns is small and

all faults can be proved to result in one or more of these fault

patterns.

335

e The feasibility of validation must be a key element of the design

process.

* The system must be structured as an aggregate of processes, each

independent from the others and all sequential in operation.

* To minimize recover timerollback should occur only to the last suc-

cessful program portion.

Other important conclusions relate to the redundancy structure of the

processor and the heirarchy of control of the failure correction process.

Summarizing:

* Failure correction by switching of standby, redundant elements is most

economical.

* Passive redundancy is not needed except in the hardcore portion of

the processor.

* The hardcore portion should be reduced to the minimum possible. It

should control other parts (which use standby redundancy), which con-

trol other parts, etc. This provides the greatest simplicity, lowest

power, etc.

In summary of the entire study, what was required by the statment of work

(see Section 1.3), has been done.

* Using an existing programmable digital processor (COPE), it has been

applied to the control system electronics for deep space missions.

* The criteria for hardware optimization have been considered and

analyzed with respect to all pertinent parameters.

* The use of LSI in the design has been extensively studied.

* The architecture, software and system design has been treated in

detail.

The authors believe that this report is the first comprehensive document

on the subject, treating all aspects of the problems in a coordinated

manner. To others, or to ourselves from the viewpoint of a later per-

spective, this coordination may seem less than it should have been and

some of our work may seem naive. None-the-less, it is a milestone on a

complex and rocky path.

336

We would welcome the opportunity to discuss our conclusions and our trades

with any interested parties.

5.2 Recommendations for Further Studies

In closing, it is appropriate to suggest paths that might be productively

followed in future studies. Some possibilities for studies are:

o Fault Tolerant Design - The recommended design (see Section 3.7.7)

is based on the use of secondary failure detection processes at vari-

ous structural and functional levels. Recovery management is dis-

tributed between the HCU, the RCU's and the IOU's, with common paths

through the software. The degree of fault tolerance attainable with

a multi-structured configuration like this is not evident unless

satisfactory proofs that all failure modes of the primary system

(real or virtual) map into subsets of failure patterns of the

associated secondary processes. Since secondary processes introduce

additional failure modes (not corresponding to any primary ones),

the recovery process must be shown to be exempt from singular cases

(where recovery fails) and cyclic loops.

Systematic procedures are required to provide visibility and conclu-

sive verification of fault tolerant properties in a multi-process

structure. Graph-theoretic approaches based on connectivity con-

siderations have been successfully used for similar purposes. Ex-

tension of the work of Ramamoorty to attack the problems discussed

above should be further explored. It is believed that proofs may

be found that proper structuring will yield systems that are con-

clusively fault-tolerant.

o Software Design Methodology - There are several aspects of the struc-

tured software design problem which need to be defined in greater

detail. General criteria for partitioning the software into non-

interacting processes must be adapted and extended to the particular

cases of the attitude control applications programs and overlayed

isosequential executives. The methodology developed by Dijkstra

and his followers is based on objectives which are different from

those of the present application. Component processes in a fault

tolerant environment must meet other requirements in addition to

337

those which have been established to enhance testability. For

instance, desirable qualities are diagnosability and fault tolerance

at the interfaces.

The software verification process usually involves a significant

amount of duplicated effort since testing personnel must retrace the

steps followed by the programmers in order to understand the program

operation and be able to design relevant test cases. In a well-

structured software organization, test procedures are an integral
part of the design criteria and facilities are provided initially to
facilitate and expedite testing.

Software Design and System Testing - There may be machine idiosyncracies,
timing problems and software incompatibilities which are difficult to

identify unless a real machine is operated in real time and with

realistic test cases. Also, design ground rules and/or criteria may

need to be revised to accommodate implementation/programming constraints
which are not obvious until detailed execution phases are completed.

In addition to validating the design approach recommended in the study,

a test program with actual hardware can provide the following valuable

information:

- Frequency of usage of the various machine instructions. This pro-
vides a measure of processor performance and an indication of the

adequacy of the current instruction repertoire.

- Diagnostic overhead. Relative qualities of alternative diagnostic

approaches can be compared with realistic sets of simulated fault

patterns.

- Recovery times. Recovery mechanisms can be exercised at system, sub-

system and unit levels. Effects of switching times of hardware

elements can be-realistically assessed.

- Interactions with testing routines. Testing and debugging routines

included in the system software can be exercised and effects on
normal system operations can be determined.

- Input/output signal flow. The input/output interfaces of the proces-

sor can be evaluated under realistic simulated conditions. Fail-

safe circuits and mechanisms can be exhaustively tested.

338

o Failure Modes, Effects and Criticality Analysis. Such an analysis

can proceed from the hardware or from the software aspects, or pre-

ferably, both. An actual processor should be analyzed in detail to

determine the effect of each class of failures. This should be con-

ducted first on the lowest level of hardware (the parts) and then

extended to the structure of the processor (by the use of computer

aided emulation) as discussed earlier in this section.

o Hardware Development. Relative to COPE, the design changes suggested

in this report should be completed to the breadboard stage, to prove

their feasibility. This includes development of the new RCU and HCU

and operating them with the existing COPE breadboard.

o LSI Studies. Some or all of the further possible LSI applications

(see Section 4.2) could be further evaluated for feasibility, cost,

etc. Some of these might then be further developed to the point of

building parts and incorporating them into existing breadboards.

o The Future. More thinking might be done on the application of and

requirements for true, low-chip-count microprocessors. This would

include the possibilities of distributing such elements throughout

the system and studying the problems/opportunities this affords

relative to the architecture, redundancy, fault tolerance, etc. of

the system.

339

BIBLIOGRAPHY

[1] A. Hopkins, A. Green, W. Weinstein, et al, "A Fault-
Tolerant Information Processing System for Advanced Control,
Guidance, and Navigation", MIT Charles Stark Draper Lab.,
Rept. No. R-659, May 1970.

[2] A. Avizienis, "Fault-Tolerant Computing: An Overview",
Computer, Jan/Feb 1971.

[3] P. G. Neumann, J. Goldberg, K. N. Levitt, and J. H. Wesley,
"A Study of Fault-Tolerant Computing: Final Report",
Stanford Res. Inst., 31 July 1973, NTIS Access No. AD-766974.

[4] E. W. Dijkstra, "The Structure of the 'THE' Multiprogramming
System", Comm. of the ACM, v. 11, n. 5, May 1968, pp.341-346.

[5] W. C. Carter, "Experiments in Proving Design Correctness for
Microprogram Controlled Computers", Digest of Papers of the
4th Annual Symposium on Fault-Tolerant Computing, Champaign,
Illinois, June'19-21, 1974, pp. 5-22 to 5-27.

[6] M. R. Paige, "Software Testing: An Overview", Digest of
Papers of the 4th Ann. Symposium on Fault-Tolerant Comp.,
Champaign, Illinois, June 19-21, 1974, pp 5-18 to 5-21.

[7] J. A. Rohr, "Starex Self-Repair Routines - Software Recovery
in the JPL Star Computer", Digest of Papers of the 2nd Annual
Symposium on Fault-Tolerant Computing.

[8] K. M. Chaudy and C. V. Ramamoorty, "Rollback and Recovery
Strategies for Computer Programs", IEEE Trans. on Computers,
v. C-21, n. 6, June 1972.

[9] R. E. Forbes, D. H. Rutherford, C. B. Stieglitz, and
L. H. Tung, "A Self-Diagnosable Computer", Proceedings of the
1965 Fall Joint Computer Conference, pp. 1073 - 86.

[10] F. P. Preparata, G. Metze, and R. T. Chien, "On the
Correction Assignment Problem of Diagnosable Systems", IEEE
Trans. on El-ect. Comp., v. EC-16, n.6, Dec. 1967,
pp. 848-54.

340

f ppendix A

ONE9 12C PlMg 0 RMEDONDO D4CH, CALIPOMNIA

SPECIFICATION FOR A

DIGITAL PROCESSOR ASSEMBLY

(COPE)

2_____________________

APP OVAL --NAT EA

a I ar if S

TABLE OF CONTENTS

1.0 GENERAL

2.0 SYSTEM ORGANIZATION

3.0 ARITHMETIC AND CONTROL UNIT (ACU)

3.1 Data Word Format

3.2 Instruction Execution Times

3.3 Description of Instructions & Instruction Formats

3.3.1 Memory Paging
3.3.2 Indexing
3.3.3- ACU Initialization Entry Point
3.3.4 Instructions
3,3.5 Double Precision Operations
3.3.6 Multiply Algorithm
3.3.7 Divide Algorithm

3.4 ACU Internal Organization

3.5 ACU/I-0 Operations and Interface

3.6 ACU BITE

-4.0 DPA MEMORY SYSTEM

4.1 Read Only Memory Units (ROM)

4.2 Random Access Memory Units (RAM)

4,3 Alterable Program Memory Units (APM)

4.4 Plated Wire Memory Units (PWM)

5.0 INPUT/OUTPUT UNIT (IOU)

5.1 Functional Requirements

5.1.1 Control
5.1.2 A/D Converter
5.1.3 Serial Data
5.1.4 Telemetry
5.1.5 Commands
5.1.6 Program Cycle Timing
5.1.7 Discrete Inputs
5.1.8 Bilevel Inputs
5.1.9 Bilevel Outputs

5.2 Peripheral Interface Definition

5.2.1 Analog Inputs
5.2.2 Discrete Inputs
5.2.3 Input Bilevels
5.2.4 Serial Input Data
5.2.5 Serial Output Data
5.2.6 Commands
5.2.7 Output Bilevels
5.2.8 Telemetry

6.0 RECONFIGURATION CONTROL UNIT (RCU)

6.1 Internal Organization

6.2 Functions

6.3 Functional Requirements

6.3.1 Reconfiguration
6.3.2 Clock Generation
6.3.3 RCU Communication

6.4 Tester Interfaces

7.0 PACKAGING

8.0 POWER

ii

1.0 GENERAL

The Digital Processor Assembly (DPA) is a small, general-purpose

spacecraft flight control computer of moderate speed and memory capabilities.

It is designed to be modular in terms of memory size, input-output channels,

packaging, and reliability (achieved by variation of the amount of redundant

standby modules). It also is absolutely fault-tolerant insofar that any

single failures will.only momentarily suppress its capability, until it

performs a self-reconfiguration.

A summary of the DPA capabilities and features is shown in

Table 1.1.

2,0 SYSTEM ORGANIZATION

The DPA is subdfvided into modules or units. Each module is a separate

sub-assembly or package (see Section 7.0). Each module is fully cross-strapped

with all other modules so that it functions as a redundant element of the DPA.

The five main types of units of the DPA are shown in Figure 2.1. These

units (together with other units, not shown in the Figure), are described

briefly below and are specified more fully in Sections 3.0 through 6.0.

o Arithmetic and Control Unit (ACU) This unit provides the

central arithmetic processing, logic processing and machine

control for the DPA. It communicates with all other units

via the data bus. The ACU provides memory and input/output

addressing- cycle, program and micro-timing; instruction

decoding; and the necessary computational registers, counters

and logic.

*1

Table 1.1

DPA CAPABILITIES AND FEATURES SUMMARY

o 4 bit Byte-organized arithmetic

o Fixed point, two's complement, fractional words

o 16 bit data and instruction word length

o 38 basic instructions, including multiply, divide and double
precision add and subtract

o 120 k ops speed (typical short instruction time of 7.2 psec)

o Up to 64k of memory addressing capability

o- RAM memories in 256 and 512 word modules

o ROM memories in 1024 and 2048 word modules

o APMmemoryavailable to replace ROM for ground test

o Compatible with plated-wire memories

o No unconditional interrupts

o Conditional interrupts available as programmed

o Fully buffered, asynchronous I/O interfaces

o Self-contained redundant clock

o Maximum I/O capability of (in modular steps of 8):

- 32 serial input channels

- 16 serial output channels

- 64 bilevel inputs

- 80 bilevel outputs

- 28 discrete inputs

- 32 analog input channels (12 bit A/D conversion)

- 32 bit (or less) command word

- Variable format telemetry interface

o Reliability selectable by number of redundant spares included

o Self-contained failure detection

o Automatic or manual reconfiguration

o Automatic program restart upon power turn-on or reconfiguration

o Self-contained internal and external program timing

o Modular packaging

2

Figure 2.1

DPA. MODULAR ELEMENTS

READ ONLY MEMORY
(ROM)

* PROGRAM STORAGE
o CONSTANTS

BASELINE PARAMETERS

RANDOM ACCESS MEMORY ARITHMETIC & CONTROL UNXT XNPUT/YUTPUJ UNIT
(RAM) (ACU) (ROU) DATA

SCRATCHPAD CALCULATIONS * ARITHMETIC PROCESSING * ANALOG INPUTS (& Telemetry)
VARIABLE STORAGE * LOGIC PROCESSING SERIAL DIGITAL R/O INPUT
PARAMETER STORAGE MACHINE CONTROL B-LEVELS, DISCRETES DATA
PROGRAM MODIFICATIONS (& Comands)

RECONFIGURATION CONTROL UNIT*
(RCU)

o CLOCK SOURCE
(Interconnects o FAILURE DIAGNOSIS &
with all modules ISOLATION *Trpy GMP dur Rudadnt .

o RECONFIGURATION CONTROL Aln sther Mnis prd tcy
o REDUNDANT STATUS by standby redundancy.

COMMAND INTERFACE

TELEMETRY INTERFACE

o Input/Output Unit (IOU) This unit provides the primary interface

between the DPA and the external world. It accepts serial, bilevel,

discrete, and analog inputs and commands and produces serial and

bilevel outputs and telemetry. All input and output interfaces with

the exterior are asynchronous and fully buffered. The IOU is designed

to be internally modular so that it may be optimized to its requirements

for minimum cost, power and part count.

o Read Only Memory (ROM) This unit provides the program memory and

storage of constants and baseline parameters. It is a solid-state,

programmable (at DPA assembly) memory using power gating for

minimum power consumption. Interchangeable module sizes of 1024 and

2048 words may be used, with a total sizing of up to 32k words.

o Random Access Memory (RAM) This unit provides the scratch pad memory

for variable storage, storage of intermediate results of operations,

parameter storage and program modifications. It is a solid-state

memory and includes parity bit generation and checking. Interchangeable

module sizes of 256 and 512 words may be used, with a total sizing of

up to 32k words.

o Reconfiguration Control Unit (RCU) This unit provides the clock

generation for the DPA and also provides for the reconfiguration of the

(redundancy of the) other modules of the DPA, should faults occur. It

confirms the faults and reconfigures the powered and standby modules of

each type, through all combinations, until a viable configuration is found.

The RCU is an optional unit and is not used when automatic reconfiguration

is unnecessary. In that case, the clock must be supplied external to the

DPA.

o Data Bus (DBS) This is not a physical unit, but is a redundant element

of the DPA. It includes the lines and cross-strapping which performs

the inter-communication between all units.

4

o Alterable Program Memory (APM) This memory element is a direct

functional, electrical and physical replacement for the ROM

element in every respect except that the APM is able to be programmed

by electrical signal inputs and is a volatile memory. The APM is

used to replace the ROM for ground testing and situations where

program changes are frequent. It is not used in flight.

o Plated Wire Memory (PWM) This memory element can be used to replace

either the ROM or RAM elements to provide low-power non-volatile

memory capability.

Each module contains its own power control circuitry and may be turned on or

off by bilevel signals. Since all modules are passively cross-strapped,

this power control controls the redundancy. All electrical power is

generated and regulated external to the DPA. The DC voltages required are

+5V, +15V, -15V, and +28V. Power consumption depends on the numbers of

modules used.

3.0 ARITHMETIC AND CONTROL UNIT (ACU)

The arithmetic and control unit (ACU) contains the central control and

arithmetic processing for the DPA. The ACU addresses all memory and inputs and

outputs, executes all instructions while controlling the DPA timing. All

communication with the memories and IOU is via a multi-wire data bus.

This section is organized to first define the DPA word format, then

describe the instructions and their functions, and then detail the ACU organization

and requirements.

5

3.1 DATA WORD FORMAT

Data words shall be in binary form using two's complement fixed point

fractional arithmetic.

Single precision words shall include a sign bit and 15 fractional magni-

tude bits as shown in Figure 3.1.

Double precision words shall have the format shown in Figure 3.2. The

most significant half word, normally operated on in the accumulator,

shall contain a sign bit and the 15 most significant fractional magnitude

bits. The least significant half word, normally operated on in the Q-

register, shall contain the 15 least significant fractional magnitude

bits. Bit number 15 having an equivalent weight 2-31 is undefined for

signed sixteen bit double precision arithmetic, but is still carried in

the machine as a working bit. Refer to Section 3.3.5, "Double Precision

Arithmetic", for a description of how this bit is handled.

3.2 INSTRUCTION EXECUTION TIMES

Basic execution times for the DPA ins-truction family are specified in

Paragraph 3.3, "Description of Instructions". The speeds given are for

the condition where instructions are fetched from the solid state read-

only memory (ROM) when no indexing is specified.

When instructions are fetched from the solid state random access memory

(RAM), a time penalty of 3.6 pseconds must be added to the basic instruc-

tion execution time.

There is no time penalty experienced for instruction fetches when opera-

ting with a plated wire memory system.

Operand Fetches and Stores - There will be an additional 1.2 psecond

time penalty experienced whenever an operand is fetched from the solid

state read-only memory. When operating with a plated wire memory system,

6

o 15
I -10 -11 -12 -13 -14 -15

2- 2-2 2- 2-4 2-5 2-6 2-7 2-8 2 2

SIGN BIT MAGNITUDE

DATA WORD FORMAT, SINGLE PRECISION

FIGURE 3.1

0 ACCUMULATOR 15 0 Q-REGISTER 15

11 23 5 6 8 -10 -11 -12 -13 -14 -15 -16 -1 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31
G 2

I .N MOST SIGNIFICANT MAGNITUDE BITS LEAST SIGNIFICANT MAGNITUDE BITSIT

DATA WORD FORMAT, DOUBLE PRECISION

FIGURE 3.2

a time increment of 1.2 pseconds must be added to any instruction requiring

an operand fetch or store.

Indexing - Independent of the memory system employed, a time penalty of

2.4 pseconds is experienced whenever indexing is specified.

3.3 DESCRIPTION OF INSTRUCTIONS AND INSTRUCTION FORMATS

The following abbreviations are used throughout this section.

DA = Device Address

DISP = Displacement Field for Relative Jumps

EA - Effective (Memory) Address

EDA = Effective Device Address

EOP = Extended Operation Code

I = Index Tag Bit

IM0 = Immediate Operand

IND = Discrete Indicator Bits

N = Number of Shifts

= Operand Source Tag Bit

OP = Operation Code

S = Sector Tag Bit

X = Operand

Y = Operand Memory Address Field

Register abbreviations are defined in Section 3.4, "ACU Internal Organi-

zation".

The generic instruction format for the ACU is shown in Figure 3.3. Bits

0-4 of the instruction word contain a five bit operation code defining

the particular instruction to be executed. Bits 5-7 are tags having

the following significance:

8

GENERIC INSTRUCTION FORMAT (for instructions listed in Table 3.1)

0 4 5 6 7 8 15

OPERAND ADDRESS

OPERAND SOURCE TAG 0 = ROM
1 = RAM

SECTOR TAG 0 = SECTOR 0
l = SECTOR DBR

INDEX TAG B 0 = NO INDEXING
I1 = INDEXING

OPERATION CODE

FIGURE 3.3

I = Index Tag. This bit is set when indexing is desired.

S = Sector Tag. This bit specifies whether or not the
Data Base Register (DBR) is to be appended to the
address field. A sector is defined as 256 words of
memory.

0 = Operand Source Tag. This bit defines the memory
source from where the operand will be retrieved;
i.e., ROM or RAM. For instructions requiring a store
operation, this bit will be set to a one by the assem-
bler. The 0 tag is used in a similar manner for a
system using a plated wire memory (refer to Section 4.4).

The effect of these tag bits are further described in Table 3.1.

Bits 8 - 15 contain the unmodified address for the operand. This

field permits an operand to be accessed from any location within a given

memory sector (256 addresses).

3.3.1 Memory Paging

Because of the limited operand address field of the instruction

word, the ACU must perform a memory paging (sectorization) function to

access operands throughout the memory system. To accomplish this task,

the ACU contains a DBR that is used to.specify the current sector from

which operands will be retrieved. A memory sector contains 256 words of

storage. The DBR operates in conjunction with the sector tag bit of the

instruction word. If the sector tag bit is set to zero, the operand is

retrieved from sector zero (i.e., locations 0 - 3778). If the sector

tag bit is set to one, the DBR defines the sector from which operands

will be retrieved. The DBR is seven bits wide. Therefore, appending

the DBR to the eight bit address field of the instruction word results

in a memory address field that is 15 bits wide. This allows addressabiiity

to a maximum of 32,768 words of memory. Note that addresses in both ROM

and RAM memories have identical values running from 0 - 777778. The

operand source tag defines the memory source from which operands will

be retrieved.

3.3.2 Indexing

When indexing is specified, the eight bit index register is added to

the eight bit address field of the instruction word.

10

TAGS S= 0 S=

INSTRUCTION I = 0 I = 1 I = 0 I = 1

LDA, LDX*, LDQ, ADD, EA = EA = EA =

SUB, MPY, OVD, ORA, EA = Y (XR + Y) mod 28 Y+2DBR [(XR+Y) mod 28 + 2DBRJ ROM RAM

ANA, EOR, ADQ, SUQ

STA, STQ, STX* EA = Y EA = EA = EA= NOT
(XR + Y) mod 2 Y+2DBR (XR+Y) mod 28 + 2DBR DEFINED RAM

NOTES: DBR = Data Base Register

EA = Effective Address

For STA, STQ, and STX instructions, the condition where f0 = 0 is not defined.

*LDX and STX are non-indexable, therefore, the condition where I = I is undefined.

TABLE 3.1

The index addition is performed modulo 256; therefore, indexing

across a sector boundary is not permitted. Instructions that are

indexable are denoted by an (I) following the operation mnemonic,

e.g., LDA (I) indicates that the load accumulator instruction is indexable.

3.3.3 ACU Initialization Entry Point

Upon initialization, the ACU executes the first instruction from

ROM location 000008.

Special Note: For many system applications, the actual requirements

for random-access memory will be within 512 words of storage. Thus

by setting the DBR to the first sector, all operands may be retrieved

by simple manipulation of the sector bit. Because of the facility

for the ACU to simply access the first two sectors of memory, it is

desirable to reserve the first two sectors of the ROM for the storage

of frequently used constants and jump tables. If this is the case,

the programmer should immediately transfer the program to sector

two via an indirect jump order.

3.3.4 Instructions

Register Operations

LDA (I) Load Accumulator (7.2 usec)

X A ; PC+l -. PC

The accumulator is cleared and replaced by the
operand X.

STA (I) Store Accumulator (7.2 psec)

A - EA PC+l -* PC

The contents of the accumulator are stored in the
memory cell specified by the effective address EA.
The accumulator is not disturbed.

12

LDA (1) Load Q-Register (7.2 psec)

X Q ; PC+1 + PC

The Q-register is cleared and replaced by the operand
X.

STQ (I) Store Q-Register (7.2 Psec)

Q - EA ; PC+l - PC

The contents of the Q-register are stored in the
memory cell specified by the effective address EA.
The Q-register is not disturbed.

LDX Load Index Register (4.8 Psec)

X - XR ; PC+l - PC

The index register is cleared and replaced by the
least significant eight bits of the operand X.
This instruction is not indexable.

STX Store Index Register (4.8 psec)

XR - EA ; PC+1 - PC

The contents of the index register are stored in the
eight least significant bits of the memory cell
specified by the effective address EA. The index
register is not disturbed. This instruction is not
indexable.

Arithmetic Instructions

ADD (I) Add to Accumulator (7.2 Psec)

A+X - A ; PC+l - PC

The operand X is added to the contents of the accumu-
lator and the result is placed back into the accumula-
tor. If an overflow results, the overflow flip-flop
is set.

SUB (I) Subtract from Accumulator (7.2 psec)

A - X + A ; PC+i - PC

The two's complemrnt of the operand X is added to the
accumulator and the result is placed back into the

13

accumulator. If an overflow results, the overflow
flip-flop is set.

ADQ *(I) Add to q-Register (7.2 usec)

Q + X - Q ; PC+1 - PC

The operand X is added to the contents of the Q-register
and the result is placed back in Q. Overflow indica-
tion is not provided for Q-register operations.

SUQ *(I) Subtract from Q-Register (7.2 usec)

Q - X Q ; PC+1 + PC

The operand X is subtracted from the contents of the
Q-register and the result is placed back in Q. Over-
flow indication is not provided for Q-register opera-
tions.

* .If an ADQ order is followed immediately by an ADD
(to accumulator) order, the operations are automatically
handled by the DPA to produce a double precision arith-
metic sum. The same is true for SUQ followed by SUB
to produce a double precision arithmetic difference.

MPY (I) Multiply (66 Isec)

A *'X - AQ ; PC+1 + PC

The contents of the accumulator is multiplietby the
operand X and the double length product is placed
in AQ.

DVD (I) Divide (115.2 psec)

AQ/X -A ; PC+1 + PC

The contents of AQ are divided by the operand X and
the rounded quotient is placed in the accumulator.
No overflow will occur if -1 s (A,Q)/X < i, i.e.,
if dividend/divisor are greater to or equal to minus
one, but strictly less than plus one. If overflow
occurs due to improper scaling, the results will be
incorrect. The overflow indicator will not be set
if this condition occurs. If quotient round-off
causes an overflow, the overflow flip-flop is set.
The Q-register is zeroed at the end of a divide
operation.

14

CMP Two's Complement (7.2 psec)

A A ; PC+l - PC

The accumulator is replaced by the two's complement
of its present value. (The format for this instruction
is shown in Figure 3.10.)

Logical Instructions

ANA (I) And (Logical Product) (7.2 usec)

AA X - A ; PC+l - PC

The logical product (inclusive or) of the accumulator
and the operand X is placed back into the accumulator.

ORA (I) Or (Logic Sum) (7.2 psec)

A - + A ; PC+l - PC

The logical sum of the accumulator and the operand
X is formed and placed back into the accumulator.

EOR (I) Exclusive Or (7.2 psec)

A(X -+A ; PC+l - PC

The logical exclusive or of the accumulator and
operand X is formed and placed back into the accumu-
lator.

15

Jump Instructions

Two types of unconditional jump instructions are provided for in

the processor.

The relative jump order (Figure 3.4) allows an unconditional

program transfer to be made within a limited area relative to the

current position of the program counter. This instruction contains an

immediate displacement field, therefore, no additional memory fetches

are required.

The indirect jump order (Figure 3.5) permits an unconditional

program transfer to be made to any location within 32,768 words of

memory. The jump address is obtained indirectly by fetching a 16-bit

word from the location specified by the instruction address field.

Indexing is permissible with this instruction. The indexing function

is to the address portion of the instruction, i.e., (Y+XR) mod 28. The

seven most significant bits of the program counter are then appended

to the instruction address field if the sector tag bit is set to a

one. If the sector tag bit is set to a zero, the indirect jump address

is retrieved from sector zero of memory. The most significant bit of

the indirect address word defines the memory source for following

instruction fetches.

JMR Jump Relative (Unconditional) (7.2 usec)

PC+l+DISP - PC

The displacement field (DISP) of the jump instruction
is added to the program counter plus one and the next
instruction is taken from there. The displacement
field is an 8-bit two's complement number; therefore,
the relative jump may be between +128 and -127 places
with respect to this instruction.

JMI (I) Jump Indirect (Unconditional) (9.6 usec)

(EA) - PC

The contents of the memory cell defined by the EA is
placed into the program counter and the next instruction
is taken from there. EA is 16 bits in length where
the msb identifies the instruction source and remaining
15 bits specify the address in that memory system from
where the next instruction is to be taken.

16

0 4 8 15

=P ==-zs DISP

__ DISPLACEMENT FIELD

OP CODE (JUMP RELATIVE)

NOTES:

PC+1+DISP - PC

DISP is an eight bit signed two's complement number

FIGURE 3.4. JUMP RELATIVE (JMR).

0 4 6 8 15

P IS - Y

ADDRESS OF INDIRECT WORD

SECTOR BIT (= SECTOR 0

S = SECTOR DEFINED BY PC

INDEX TAG

OP CODE (JUMP INDIRECT)

NOTES:

If S = O0: EA = Y (EA) - PC

If S = 1: EA = Y + 2 MSBPC, (EA) - PC

THE INDIRECT WORD IS RETRIEVED FROM THE MEMORY CURRENTLY SPECIFIED AS THE INSTRUCTION SOURCE.

THE MSB OF THE INDIRECT WORD SPECIFIES THE 'NEW INSTRUCTION SOURCE AND THE REMAINING FIFTEEN

BITS SPECIFY THE ADDRESS IN THAT MEMORY SYSTEM. THE FORMAT OF THE INDIRECT ADDRESS IS SHOWN

BELOW.
0 15

ADDRESS

(15 BITS)

INSTRUCTION 0 = ROM LSB
SOURCE BIT 1 = RAM

INDIRECT ADDRESS FORMAT

FIGURE 3.5. JUMP INDIRECT (JMI).

Shift Instructions

The instruction format for shift and serial transfer orders

is shown in Figure 3.6.

All operations within this class are identified by a single

operation code. The specific order to be executed by the ACU is defined

by the extended operation code (EOP). The numuer of places that the

register(s) will be shifted is defined by the number N. -During the

assembly of symbolic instructions into machine code, the assembler

places a 5-bit unsigned number N-I in bit positions 11-15 of the

instruction. Note, therefore, that a shift of zero places (e.g.,

ALS 0) is undefined.

ALS Accumulator Left Shift (1.2+1.2N usec)

N-1 - CC : A2- i. A2 -(i-n), 0 Al5 ; PC+l + PC

The accumulator is shifted left N places. Bits
shifted out of the sign position are lost. Zeros
-are shifted into the least significant end of the
accumulator. A change in the sign position is
defined as an overflow and the overflow flip-flop
is set.

ARS Accumulator Right Shift (1 .2+1.2N vsec)

N-1 -> CC ; A2-i - A2
- (i+n), AO0 - AO0 ; PC+l PC

The accumulator is shifted right N places. Bits
shifted out of the lower end are lost. The sign
bit is stretched into the most significant positions.
Overflow is not defined.

ARC Accumulator Right Cycle (1.2+1.2N Psec)

N-1 - CC ; Ao2i A.2 - (i + n) A15 AOO ; PC+l - PC

The accumulator is shifted right in a circular manner
such that bits shifted out of the least significant
position are inserted into the sign position. Over-
flow is not defined.

LLS Long Left Shift (1.2+1.2N psec)

N-1 CC ; AQ2 - i AQ2 - (i - n) Q0 - A15, 0 Q15 ;

PC+1 - PC

19

0 4 5 7 11 15

OP EOP

NUMBER OF SHIFTS*

EXTENDED OP CODE
(CLASS OF SHIFT)

OP CODE (SHIFT)

NOTES: *Number of places shifted = N

A shift of zero places is undefined.

FIGURE 3.6. SHIFT AND SERIAL TRANSFERS ALS, ARS,
ARC, LLS, LRS, LRC, TRC, INS.

The accumulator and Q-register are considered as a
single register and both registers are simultaneously
shifted left N places. Bits shifted out of the sign
of A are lost and zeros fill the least significant
bits of Q. Overflow is defined if the sign of A
changes.

LRS Long Right Shift (1.2+1.2N psec)

N-i - CC : AQ2 -i AQ2-(i+n), A15 QOO,.AOO AO0

PC+I + PC

The A and Q-registers are connected together as in
the LLS instruction and shifted right N places. The
sign of A is stretched into the most significant bit
.positions. Bits shifted out of the lower end of Q
are lost. Overflow is not defined.

LRC Lon Right Cycle (I .2+1.2N ilsec)

N-1 + CC : AQ.2- i AQ°2 -(1+n), A15 - Q00, Q15 - A00 ;

PC+1 PC

The A and Q-registers are shifted right N places in
a circular manner such that bits shifted out of the
i.s.b. of A are inserted into the sign of Q and bits
shifted out of the l.s.b. of Q are inserted.into the
sign of A. Overflow is not defined.

Index Test, Decrement, and Skip Instruction (3.6 psec)

SXD Skip on Index Zero or Decrement

if XR O: XR-1 - XR, PC+l - PC

if XR = 0: PC+2 - PC

If the contents of the index register is not equal to
zero, the index register is decremented by one and the
next instruction in sequence is taken. If the contents
of the index register is equal to zero, the next
instruction in sequence is skipped and the index
register remains undisturbed. The format of this
no address instruction is shown in Figure 3.10.

Subroutine Linkage Instructions

The format for these instructions is shown in Figure 3.7.

21

0 4 6 8 15

OP CODE S

ADDRESS IN RAM

SECTOR TAG

OP CODE

FIGURE 3.7. LINK INSTRUCTIONS SAV, RSR.

SAV Save Return Link (8.4 psec)

PC+l - PC PC - EA

The program counter is incremented by one and stored
in the memory cell specified by the effective address EA.

RSR Return from Subroutine Call (9.6 usec)

(EA) - PC ; PC+1 - PC

The contents of the memory cell defined by the effective
address (EA) is transferred to the program counter which
is then incremented by one.

Internal Machine Indicator Tests

Internal machine indicators are tested by means of a SKI instruc-
tion. Indicators that may be tested via this instruction are shown in
Figure 3.8. The DLY error flag indicator is set to one by the hardware
if ~ advance.signal is received when the processor is not executing
a :DLY instruction. The other indicators are self-explanatory.

SKI Skip on Internal False (3.6 usec)

If internal is true PC+1 '- PC

If internal is false PC+2 -> PC

If any of the internal machine indicators specified
by the associated discrete in the IND field are true,
the following instruction in sequence is taken. The
overflow bit and DLY error flag indicator are reset
to zero once they have been tested.

Input/Output (I/0) Instructions

The instruction format for the following I/0 oriented instructions
is shown in Figure 3.9. These instructions are used to implement various
operations in the IOU. A complete discussionof their significance and
method of utilization is provided in Section 3.5, "ACU I/O Interface".
It should be noted that the indexing operation performed here is different
than for the other machine instructions. For I/O instructions, the in-
dexing operation is applied to the device address field, i.e., if the
index tag bit is set EDA = [DA + XR] modulo 256.

23

0 4 5 7 8 15

OP IND --

j (SPARE)

(SPARE)

DLY ERROR FLAG

SIGN OF Q (QOO)

OVERFLOW

A NEGATIVE

A POSITIVE BUT NOT ZERO

A:= 0

(SPARES IF NEEDED)

OP CODE

NOTE: The overflow bit is reset to zero after being tested.

The DLY error flag is reset to zero after being tested.

FIGURE 3.8. SKIP ON INTERNAL.

0 4 5 8 15

OP I DA

DEVICE ADDRESS

INDEX BIT 80 = NO INDEXING
1 = INDEX DEVICE ADDRESS

OP CODE

NOTES:

DA = Device Address

EDA = Effective Device Address

If I = O: EDA = DA

If I = 1: EDA = DA 4

FIGURE 3.9. I/O INSTRUCTIONS INP, OUT, SBL, RBL, SKE.

External Device Test

SKE (I) Skip on External False (8.4 isec)

If external is true, PC+l1 PC

If external is false PC+2 + PC

If the state of the external device specified by the
effective device address (EDA) is false, a "zero"
level is returned to the ACU on the common- response
line and the next instruction in sequence is skipped.
If the state of the external device is true, a "one"
level is returned to the ACU on the common response
line and the next instruction in sequence is taken.

SBL (I) Set Bi-Level and Skip if Ready (8.4 psec)

If ready: PC+1 - PC

If busy: Set bi-level 2EDA , PC+2 - PC

This instruction is used to set an external bi-level.
The bi-level specified by the EDA is set to a logical
"one" 'state if the external device is ready and the
next instruction in sequence is skipped. If the
external device is busy, no action is taken and the
next instruction in sequence is executed.

RBL (I) Reset Bi-Level and Skip if Ready (8.4 usec)

If ready: PC+1 + PC

If busy: Reset bi-level 2 EDA, PC+2 - PC

This instruction is used to reset an external bi-level.
The bi-level specified by the EDA is reset to a logical
"zero" state if the external device is ready and the
next instruction in sequence is skipped. If the
external device is busy, no action is taken and the
next instruction in sequence is executed.

INP (I) Input to Accumulator and Skip if Ready

If busy: PC+1 PC (7.2 isec)

If ready: (EDA) + A, PC+2 + PC (12.0 Psec)

Data contained in .the external device specified by the
EDA is transferred into the accumulator in 4-bit bytes
if the device is ready and the next instruction in
sequence is skipped. If device EDA is busy, the-next
instruction in sequence is executed and the accumulator
remains undisturbed.

26.

OUT (I) Output from Accumulator and Skip if Ready

If busy: PC+l + PC (7.2 psec)

If ready: A - Device EDA; PC+2 - PC (12.0 usec)

Data contained in the accumulator is transferred in
4-bit bytes to the external device specified by EDA
if the device is ready and the next instruction in
sequence is skipped. If device EDA is busy, the next
instruction in sequence is executed. In either case,
the accumulator remains undisturbed.

INS Serial Input to Accumulator (1.2+1.2N isec)

.N-1 + CC ; Serial Data - ADO, A-2-i + A-2-(i+n), PC+l - PC

N data bits are accepted and transferred serially
into the accumulator. External data is accepted l.s.b.
first. A transfer gate is provided at the I/0 inter-
face to indicate when data is to be transferred. The
format for this instruction is shown in Figure.3.4.

Other Instructions (See Figures 3.10 and 3.11)

LDB Load Data Base Register Immediate (4.8 4sec)

IMO - Base register ; PC+1 + PC

LXR Load Index Register Immediate (4.8 psec)

IMO - XR ; PC+l - PC

DLY Delay

This instruction causes the machine to halt instruction
execution until

(1) a delay advance timing signal is received from
the real time clock.

(2) an advance signal is received from the programmer/
maintenance console.

The next instruction in sequence will commence execution within

1.2 vseconds of the leading edge of the delay advance signal.

27

0 4 7 15

OP IMO

I IMMEDIATE OPERAND

I __ OP CODE

NOTES:

For LXR IMO + XR

For LBR IMO - DBR

FIGURE 3.10. IMMEDIATE INSTRUCTIONS LBR, LXR.

0 4 5 7 15

OP EOP

EXTENDED OP CODE

OP CODE (NAD)

NOTES: The instruction is defined by the EOP code.

FIGURE 3.11. 'OTHER INSTRUCTIONS (NO ADDRESS) DLY, SXD.

TRC Transfer Reconfiguration Control (1.2+1.2N sec)

N-l + CC; RCU Data + AOO

Q15 + RCU, AQ.21 AQ2 (+n)

A15 + QOO; PC+l 4 PC

This instruction is used to serially exchange informa-
tion between the RCU and the A,Q registers of the ACU. '

The length of the shift performed is specified in the
instruction word (see Figure 3.4). During the shifting
operation, Q15 is placed on the l.s.b. of the output
bus and the serial data stream from the RCU is input
to ADO via the lis.b. of the input bus.

30

3.3.5 Double Precision Operations

Double precision words are carried in the machine as is shown in

Figure 3.2. The least significant half of the word is carried in the

Q-register and the most significant half is carried in the accumulator.

Double precision additions (or subtractions) are automatically produced

by the processor when the programmer places ADO and ADD (or SUQ and SUB)

operations in contiguous sequence. Based upon the results of the Q-

register operation (i.e., ADQ or SUQ), the hardware automatically pre-

pares the proper carry for the following accumulator operation (i.e.,

ADD or SUB) so as to produce a double precision result. The time re-

quired to implement double precision sums or differences by this tech-

nique is 14.4 seconds (19.2 seconds if indexing is specified).

Programming restrictions are as follows:

An ADQ (SUQ) operation will never be followed immediately by a

SUB (ADD) instruction.

An ADD (SUB) instruction may immediately follow an ADQ (SUQ)

operation only if a double precision result is intended.

There are no other restrictions.

3.3.6 Multiply Algorithm

A single precision multiply order produces a double length product

having a sign and 30 magnitude bits. A flow chart describing the ACU

two-bit-at-a-time multiply algorithm is shown in Figure 3.12. The

multiplier is taken from A and placed into Q as part of the hardware

implemented micro-routine. The multiplicand is obtained from the memory

cell defined by the effective operand address. The resulting product

ends up in A, Q as is shown in Figure 3.2. For this operation, the least

significant bit of the Q-register (i.e., Q15 = 2-31) is undefined. Be-

cause of the hardware mechanization of the multiply order, the sign of

the multiplier will end up in this position at the end of the operation.

(Currently no provision is being incorporated in the hardware to zero

this bit for case when a negative multiplier is used. During double

31

ISF ISF
TO TO-3

PM - MR; 0 CC; PC+l - PC RWM + MR; 0 CC; PC+1 PC

T4-5

T MR(LSH) + XR + MR(LSH) T

T6

MR(LSH) + AR(LSH); If S = 0, 0 - AR(MSH); If S : 1, DB - AR(MSH)

T7

T8-11

RWM + MR;
T8-11 A +Q; 0 A

A Q; 0 ,A

CC+1 CC; 0 - Q16; Test Q14, Q15

T8-11 T8-11 T8-11
A+O A A+MR - A A-MR A

CCO-C16 CCO C16

T12
Shift AQ*; CC+1 + CC

T13 . .. T12 T11

Shift AQ*; CC+1 CC PC + AR PC + AR
Test Q14 - Q16

T14 011 + 100

Shift AQ* MT+ TO
CC+1 CC

* AO = AO.*V2 + CF2.0V2, A15 - QO
= T14-415.Q16 + Q 14-Q1 -Q16

= (-TTCCO + Q15*CCO
(D= (Q14.CCO + Q15-CCOXI

Fiqure 3.12. Multiply AlgorithC E T

precision addition, a carry out of Q15 is possible if both augend and

addend have "ones" in the position.)

The resulting product for several example cases of multiplier and

multiplicand is shown in Table 3.2.

TABLE 3.2

Multiplier (A) Multiplicand (X) Product (AQ)
(Octal) Octal) (Octal)

A MR A Q

000000 xxxxxx 000000000000
100000 000000 000000000001
100000 100000 100000000001:
100000 000001 177777000001
000001 100000 177777000000
177777 077777 177777000003
077777 177777 177777000002
077777 077777 077777177776
000001 077777 000000177776
001216 000001 000000002434

No overflows can be produced from multiplication.

33

3.3.7 Division Algorithm

The DPA uses a non-restoring division algorithm shown in Figure 3.13

to produce a 16-bit quotient from the division of AQ by the operand re-

trieved from memory. The quotient is generated one bit-at-a-time by

this algorithm. The basic process is as follows:

Examine the sign of the dividend (remainder) and divisor. If they

are the same, generate a quotient bit of "1" and subtract the divisor

from twice the remainder. If they are different, generate a quotient

bit of "0" and add the divisor to twice the remainder. Repeat the

process until 16 quotient bits have been produced.

Flip-flop DCF holds the result of the remainder-divisor sign com-

parison test (CDF = 0, signs agree; DCF = 1, signs disagree), and there-

fore, represents the new quotient bit and specifies the next arithmetic

operation to be performed. The equation for the quotient bit is CO

(Cl + DCF). The first meaningful bit of the quotient produced is the

sign bit which introduced into Q15 when the cycle counter equals one

(Cl). This particular bit is inserted into Q15 as the inverse of DCF

in order for the sign of the quotient to end up in the proper state

at the end of the divide operation.

To implement quotient round-off, the seventeenth bit of the quotient

is determined by the same process. If it is a "one", 2-15 is added to

the quotient as it is transferred into the accumulator. A quotient round-

off resulting in an accumulator overflow will set the overflow indicator.

The Q register is zeroed at the end of the divide operation and the

rounded quotient appears in the machine's accumulator.

Divisor Smaller than Dividend - If scaling is incorrect such that

the divisor is smaller than the dividend, an incorrect quotient will be

produced. There is no special hardware included in the DPA to test for

a division over-capacity condition. The overflow flip-flop will not nec-

essarily be set if scaling is incorrect.

34

ENTER

ISF ISF

TO TO-3

PM MR; 0 CC; PC+1 + PC RWM MR; O CC; PC+1 - PC

I I
T4-5

T # MR(LSH) + XR + MR(LSH)

T6

MR(LSH) - AR(LSH)
If S=O, 0 AR(MSH); If S=l, DB + AR(MSH)

T7 ,

PM MR COoT8-1
COT8-11.

COT8-11.
RWM MR

MR - MR

C17oT12

Shift AQ left: Quotient bit Q15, QO - A15;
AO E MRO + DCF; CC+1 -> CC

DCF DCF
C1-17-T8-119 .1-17oT8-13 C

A-MR + A A + MR + - A

C17
C17oT12

AO G@ MRO DCF; CC+l + CC

DCF DCF
C18oT8-1= C18o8-1I

Q + 2-15 A; 0 A Q
Test for overflow Q " A, O Q

C18 T11

PC AR

EXIT

35

Figure 3.13. Divide Algorithm

Divisor Equal in Magnitude to Dividend- Division of numbers of

equal magnitude should result in a quotient of either plus or minus one.

A quotient of "plus one" is not representable in the machine and will

cause the overflow indicator to be set during quotient round-off. A

quotient of "minus one" will be correctly represented in the machine

as 1.000.... 00.

36

3.4 ACU INTERNAL ORGANIZATION

The ACU is internally organized as shown in the block diagram, Figure 3.14.

Each functional block shall operate as described in the following paragraphs.

In this section the following abbreviations are used:

A = A Register IR = Instruction Register

AR = Address Register M = Memory Register

CC = Cycle Counter MTC = Micro-Timing Counter

DB = Data Base Register P = Program Counter

DSA = Data Selector A PTC = Phase Timing Counter

DSB = Data Selector B Q Q Register

ID = Instruction Decoder XR = Index Register

Adder

The ACU contains a 4-bit Adder that performs the following operations

on two's complement'numbers: add, subtract, exclusive-OR, inclusive-OR and

AND. The Adder is used not only for arithmetic and logical operations on

data, but also for address modification (indexing), for performinq relative

jumps and for all byte-organized data transfers between registers, the RWM

and the IOU. The Adder receives its two inputs from the two data selectors

and provides a buffered output to the various ACU registers, and to the RWM

and IOU on the output data bus. In subtraction the output of DSB is sub-

tracted from the output of DSA.

The Adder contains two carry flip-flops and two overflow flio-flops.

One flip-flop is used only during indexing additions. The other carry

flip-flop saves the carry bit between data additions as well as the carry

from the last byte of the operation. The first overflow flip-flop is used

during ADD, SUB, ALS and LLS, where an overflow condition sets the flip-flop

and can be sensed by SKI. The overflow is reset only by a SKI instruction

that tests for overflow. The second overflow flip-flop is used only during

MPY when overflows normally occur, and it cannot be sensed by SKI.

37

RETER ISTER RE15ER P p CoUN

I
t

.*•Figure 3.14

'4.

K_____________________ *t4
A -W4

mosm. ,.
A~r

TA F D

BLCKDIGRt
7-Ur(

DFigure 3.1.4

The Adder facilitates double-precision addition and subtraction by.

the following feature: when an ADQ or SBQ is immediately followed by an

ADD or SUB, the carry bit is properly handled to execute the double-ore-

cision operation.

Data Selector A and B

Data Selector A (DSA) has four 4-bit inputs; A, Q, XR and P.

Data Selector B (DSB) has three 4-bit inDuts; A, M and the Data Bus.

DSB selects A only during CMP; all other instructions requiring A as an

operand use DSA. Either selector may be disabled when the Adder is used

as a data path for transferring data between registers, memory and IOU.

A Register

Tjis 16-bit register is the primary arithmetic register of the ACU

and consists of a sign bit and 15 magnitude bits.- It is capable of shifting

in three modes: right one bit, left one bit and-right four bits (one byte).

All inputs are clocked into the register with CLKC and six of the bits,

AO, Al, A12, AT3, A14 and A15 are dual ranked and change at CLKDo

A contains the multiplier at the beginning of MPY, and it is trans-

ferred to Q while A is cleared by the MPY instruction. At the end of MPY,

A contains the MS half of the product. At the beginning of DVD, A contains

the MS half of the dividend and the rounded quotient at the end. The only

byte input to A is the Adder output. Serial inputs to A are from the serial

1/0 interface, the RCU, Q, and the input determined by the MPY control logic.

Q Register

This 17-bit register is the secondary arithmetic register of the ACU.

For single-precision operations, Q consists of a sign and 15 magnitude bits,

but consists of 16 magnitude bits for double-precision operations. The 17th

bit is used only during MPY to determine the manner of forming each new

partial product. Q has the same three shift modes as A. Six bits of Q
(QO, and Q12 through Q16) are dual ranked as in A. It receives the multiplier

from A in thefirst step of MPY, and contains the LS half of the product at

the end. It contains '"the LS half of the dividend at the beginning-of DVD. The

only byte input to Q is the Adder output. Serial inputs consist of AO and

the quotient bit.

39

Index Register (XR)

This 8-bit register contains a number used to modify memory and I/0

device addresses. When indexing is specified by an instruction, XR is added

to the 8 LSB of M and the result placed in the 8 LSB of M. The register

operates in two modes: as a down-counter with a zero detector and as a two-

byte shift register. It shifts in bytes and recirculates when indexing and

can be loaded from M or RAM via the Adder. The down-counter is clocked by

SXD.

Memory Register (M)

This 16-bit register receives instructions or data from ROM in parallel

or in bytes from RAM. The MS half is single ranked, and is loaded by CLKC.

The LS half is dual ranked, the first rank is loaded by CLKC and the second

rank loaded from the first by CLKD. .The LS half of MR is provided in par-

allel to the Address Register (AR).

M contains the multiplicand during MPY and the divisor during DVD.

During these two operations, M is loaded from memory and recirculated during

the execution of the instruction.

In a JMR instruction thLS half of M is considered to be a signed,

two's complement number that is added to P. The JMR shifts the LS half

of M four bytes. During this shift the sign bit is written into all 4 bit

positions of M input in order to stretch the sign for the addition to the

16-bits of P.

Instruction Register (IR)

The IR is an 8-bit single-ranked register that is loaded with the

operation code, index bit, sector bit, and operand source bit, from the MS

half of M by CLKD when M has been loaded with an instruction. This register

is not clocked when data is being handled in M. The register output feeds

the ID.

40

Instruction Decoder (ID)

The input to the ID is the eight-bits stored in the XR. Five of these

bits are decoded to determine the appropriate operation to be performed by

the ACU. The ID also decodes the remaining three bits to indicate the type

of shift or the type of no-address operation to be performed. Depending on

the class of instruction, the ID generates: 1) an output that causes the

AR to select sector 0 or the DB in forming addresses and 2) an output that

indicates whether indexing is to be performed or not. The details of the

instruction format are given in Paragraph 3.3.

Program Counter (P)

P is a 16-bit up-counter that is used to provide the memory address

for retrieving instructions. In normal operation, P is incremented each

time an instruction is executed in order to execute the instructions in

sequence. Fifteen of the bits are used for the address, giving a limit of

32,768 words of.memory. The MSB of P.is used as the instruction source

flip-flop (ISF) that indicates whether instructions are being read from

ROM or RWN. The P output is provided in parallel to the AR.

The P also behaves as a byte shift register when it is being loaded,

stored or modifed by a JMR. When shifting, its input is the Adder output,

and its output goes to DSA. During SAV, P is effectively recirculated by

loading it with the Adder output. The master reset pulse resets P in order

to initiate proper operation.

Data Base (DB)

This 7-bit register provides the 7 MSB of operand addresses to the AR

while the 8 LSB are provided by M. It can be loaded in parallel from M by

LDB.

41

Address Register (AR)

The AR provides a 15-bit parallel address bus to both memories. The

Control Logic causes the AR to select the proper address source or forces

zeros for the seven MS address bits. When fetching instructions, the

AR selects all 15 bits from P. When fetching operands, the AR selects the

8 LSB from M and either selects the 7 MSB from the DB or forces zeros, de-

pending upon the sector bit of the instruction. The address for JMI is

formed from the 8 LSB of M and either the 7 MSB of the PC or forced zeros,

as dictated by the sector bit.

Phase Timing Counter (PTC)

This two-bit counter with its output gating circuits generates the

four-phase clock, The input frequency is eight times

the output frequency. In most cases data is clocked into a register or

written into memory with CLKC, and register or counter outputs change with

CLKD.

Micro-Timing Counter (MTC)

This 4-bit counter generates a sequence of T times that are used to

control each of the events that occurs in the execution of an instruction.

Except for shift instructions, and DLY, each T time is one clock-time long.

The counter begins at TO and advances from one state to another as instruc-

tion execution progresses and returns to TO when it is completed. The

counter either counts up in a binary sequence or is loaded in parallel with

certain hard-wired numbers, depending on the sequence required for the

particular instruction. The counter is reset by the master reset pulse.

Typical operations that occur during each T time are given below:

TO Read instruction from ROM into M and IR if ISF = 0, Increment P.

TO-3 Read instruction from RWM into M and IR in bytes if ISF - 1,
Increment P in TO.

T4 Perform shift instructions, delay or serial input.

T4-5 Index memory address or send I/O device address to IOU.

T6 Select operand address and decode it in the RWIM.

T7 Load M from PM if so specified by operand source bit.

T8-11 Perform byte-organized arithmetic and data transferring
operations.

42 -

T12-14 Perform shifts required during MPY and DVDo

T15 Not used; entry is a fault condition.

Cycle Counter (CC)

The CC is a 5-bit binary up-counter that is used to count the number

of operations performed in MPY and DVD, and to count the number of clocks

applied during the shift and serieal input instructions. Some of the states

are decoded to provide control signals for MPY and DVD. A comparator is used

by shift instructions to compare the counter contents with 5 LSB of the M

and causing the MTC to return to TO when a comparison is found. The CC is

not used by the majority of the instructions.

Control Logic

From the decoded instruction, the MTC, CC, PTC and-various other

signals the Control Logic generates control signals to shift registers,

select data, operate the Adder, etc., as shown in the block diagram. The

Control Logic supplies signals to the memories and IOU as well as the ACU.

Comparator

This circuit is used only by the SKI instruction. Each of the status

bits that are tested by SKI are ANDed with a corresponding bit in M and the

results ORed to determine if the next instruction is to be skipped.

Fault Detection

Three fault conditions are detected by this circuit:

o Execution of an unused instruction code.
o Entry of the MTC to state T15.
o Receipt of a Delay Advance signal when the ACU is not

executing DLYo

The output of this circuit is provided to the RCU. Detection of a delay

fault can be sensed by the SKI instruction.

43

3.5 ACU INPUT/OUTPUT (I/O) INTERFACE

General

This section provides a general description of the ACU I/O mechan-

ization. All communications with the central arithmetic processor are

via this interface. The design of IOU's shall be compatible with the

ACU interface mechanization described herein. A basic signal interface

diagram of the ACU I/O is shown in Figure 3.15. System timing specifica-

tions are provided for each particular I/O instruction that may be

executed by the ACU.

ACU I/O Signal Interfaces

Common Output Bus - All information transfers from the ACU are

performed over a 4-bit wide common output bus. This bus is used to

transfer address or data information from the ACU to the peripheral

hardware. Eight bit address transfers are mechanized by sequentially

sending two 4-bit address bytes over this interface. Sixteen bit data

transfers are implemented by sequentially sending four 4-bit data

bytes over this interface. Serial data outputs from the ACU are trans-

mitted to the peripheral hardware via the least significant bit line of

the 4-bit wide interface, Control signals are provided to inform the

peripheral hardware as to the particular class of information on the

output bus.

Common Input Bus - All information transfers to ACU are performed

over a 4-bit wide common input bus. Communication over this bus is to

the accumulator of the ACU. -Sixteen bit data transfers are implemented

by externally sending four 4-bit data bytes to the ACU in sequence.

Serial data inputs are transmitted to the ACU using the l.s.b. line

of the 4-bit wide interface. Control signals are provided to the

external hardware to inform the sender when new data should be placed

on the input bus.

Common Response Line - The common response line is used by the

peripheral hardware to inform the ACU of the conditional response to an

44

LSB

Common Output Bus
(LSB used for serial output from accumulator)

LSB

Common Input Bus
(LSB used for serial input to accumulator)

Common Response

I/0
Function Code (INP, UT, SBL, RBL, SKE, INS, ARC)

, (CLKC
CLKD

Address Gate

___ Data Gate

Delay Advance

Master Reset (Initialize)

BITE Output

TRC Control

Figure 3.15. ACU I/O Signal Interface Diagram

executed instruction. In the case of an I/O data transfer or bilevel

set/reset command this line notifies the ACU whether or not the peri-

pheral is ready to accept (or transmit) the information. In the case of

an external indicator test, this line informs the ACU of the specified

indicators state (true or false). Timing for the common response signal

is shown on the I/O instruction timing diagrams.

I/O Function Code - The I/O function code (3 bits) is used to in-

form the peripheral hardware of the particular I/O instruction currently

being executed by the ACU. A unique code is available for each ACU

initiated I/O order, viz., INP, OUT, SBL, RBL, SKE, INS, ARC. The codes

are shown in Table 3.3.. The state of these lines are maintained through-

out the execution of the instruction.

Table 3.3

Function
Operation Code

ARC 0 0 1
INS u 1 o
INP 0 11
OUT 1 0 0
SBL 1 0 1
RBL 1 1.0
SKE 1 1 1

Clocks - Basic 833 kHz ACU generated phase C and D clock pulses (CLKC,

CLKD) are supplied to the peripheral hardware over separate lines. All

external logic must use these clock pulses in conjunction with appropriate

data and/or control lines to initiate logical functions.

Address Gate - The address gate signal is used to inform the external

hardware that address information is being placed on the common output

bus.

Data Gate - The data gate signal is used to inform the external

hardware that (1) data is being placed on the ACU common output bus

46

in the case of byte or serial data output transfers, or that (2) data

should be placed on the common input bus in the case of byte or serial

data input transfers.

Delay Advance Signal - This line, when placed in the logical zero

state, will cause the ACU to advance to next instruction if it is in the

process of executing a DLY instruction.

Master Reset (Initialize) - This line, when placed in the logical

"one" state, will cause logic in the ACU to be maintained in a reset

state (instruction execution will be inhibited). When the reset line

changes from the "ope" to "zero" state, the ACU will begin executing

instructions from ROM location (0000)8

BITE Output - This line is used to inform the RCU or peripheral

hardware of the general "health" of the ACU. Built-in test equipment

internal to the ACU will cause this line to assume a logical zero state

if a fault has been detected. If the ACU is operating properly, this

line will be maintained in a logical "one" state. The details of the

ACU BITE logic are described in Section 3.6.

TRC Control - The TRC control line is used to inform the RCU that

a data exchange is to be initiated between units.

Output Instruction

The output (OUT) instruction is used to transfer data from the

accumulator of the ACU to an external device. Data transfers are

implemented in byte fashion. A device address is supplied to the ex-

ternal hardware in conjunction with this instruction. Timing is as shown

in Figure 3.16.

Shortly after the ACU fetches and decodes this instruction, an OUTput

code is forced on the 1/0 function control lines. The peripheral hardware

decodes this information to develop an "@UTput in progress" control signal.

47

i TO T4 IT5 I T6 I T8 I T T10 Tl I TO

CLKC -

CLKD

OUT CODE

ADDRESS GATE

RESPONSE
TESTED BY ACU

4th DATA GATE

OUTPUT BUS [BYTE BYTE 2 BYTE 1 BYTE 2 BYTE 3 BYTE 4

BYTE 1 = L.S. BYTE
RESPONSE: IF READY
NO RESPONSE: IF BUSY
IF ISF = 1, OUT WILL REMAIN HIGH THRU T3

Figure 3.16. Output Timing

The OUT instruction contains an 8-bit immediate device address

field that identifies the particular external unit to receive the

information. The immediate device address (DA) may be modified by the

ACU to form an effective device address EDA = (XR + DA) mod 28 if

indexing is specified. During the time interval when the ACU is forming

the EDA, the output of the operator (adder) is qated onto the common

output bus. An address gate control signal is simultaneously generated

by the ACU hardware during this two byte interval.- This gate is used

by the external device to clock the EDA into the appropriate peripheral

logic.

The external hardware initiates a test of the addressed device

during the next clock interval. If the device is "ready", a response

is sent back to the ACU over the common response line.

A ready response causes the ACU to place four sequential 4-bit data

bytes on the common output during the interval shown in Figure 3.16.

A data gate is simultaneously established during this interval to

control and initiate the clocking of data bytes into the specified

peripheral register.

If the device specified is busy, no response is sent to the ACU

and the next instruction in sequence is executed. In this case, no

data transfers are made. In either case, the contents of the accumu-

lator remains undisturbed.

Input Instruction

The Input (INP) instruction is used to transfer data from an external

device into the accumulator of the ACU. Data transfers are implemented

in byte fashion. A device address is supplied to the external hardware

in conjunction with this instruction. Timing is as shown in Figure 3.17.

Shortly after the ACU fetches and decodes this instruction an INP

code is forced on the I/0 function control lines. The peripheral hardware

decodes this information to develop an "INPut in progress" control signal.

The INP instruction contains an 8-bit immediate device address field

that identifies the particular external unit to furnish the information

49

TO T4 T5 T6 T8 T9 T10 IO11 I TO

CLKC

CLKD

INP CODE

ADDRESS GATE I

RESPONSE
TESTED BY ACU

DATA GATE I

OUTPUT BUS BYTE I BYTE 2

INPUT BUS BYTE 1 BYTE 2 BYTE 3 BYTE 4

BYTE 1 = L.S. BYTE
RESPONSE: IF READY
NO RESPONSE: IF BUSY
IF ISF = 1, INP WILL REMAIN HIGH THRU T3

Figure 3.17. Input Timing

to the ACU. The immediate device address (DA) may be modified by the
ACU to form an effective device address EDA = (XR + DA) mod 28 if in-
dexing is specified. EDA is gated onto the common output bus during
the interval when address formation is mechanized. An address gate
control signal is simultaneously developed during this period of time
and is used by the peripheral hardware to clock the EDA into the appro-
priate logic.

The peripheral device initiates a test of the addressed device during
the next clock interval to determine if it is ready to input data to the
ACU. If the device is "ready", a response is sent back to the ACU over
the common response line. A ready response causes the
ACU to initiate a data gate signal that is used by the peripheral device
to sequentially gate four 4-bit data bytes onto the common input bus.

If the device specified is busy, no response is sent to the ACU and
the next instruction in sequence is executed. In the latter case, the
accumulator remains undisturbed.

Serial Input

The serial input instruction is used to transfer NRZ serial informa-
tion from an external device into the accumulator of the ACU. Timing
is as is shown in Figure 3.18.

It should be noted that no device address is provided in conjunction
with this instruction. Therefore, all serial input data transfers must
be preceded by a SBL (set bi-level) order to select a particular external
device or register as the data source. This instruction would be followed
by an INS order as is indicated below:

SBL (==(register ready)
Sz- (register busy) - JMR

INS 2

As soon as the ACU fetches and decodes the serial input instruction,
an INS function code is forced to the interface informing the external
device that this order has started. A data gate is supplied to the I/O
during the interval when the accumulator is ready to accept the NRZ
input stream. The first data bit is transferred into the accumulator

51

TO T4.CO T4*C1 f4.C (-1) T4*Cn I TO

CLKC

CLKD

INS OR ARC CODE

DATA GATE

DATA (IN OR OUT) BIT BIT2 BIT n BIT n+

DATA GATE ENCLOSES n+l CLOCKS
BIT 1 = LSB
IF ISF = 1, CODE WILL REMAIN HIGH THRU T3-

Figure 3.18. Serial I/O Timing

-by the first ACU CLKC-pulse following the rise of the data gate. Other

sequential bits are accepted as long as the data gate remains true. Upon

completion of the transfer, the bi-level should be reset. As an option,

this operation may be performed by executing a RBL instruction.

It should be noted that the INS instruction format is identical

to other accumulator shift orders. This feature gives the system user

added flexibility in that partial word transfers can be mechanized

simply by specifying the correct number of shifts (N) in the INS instruc-

tion field.

Serial Output

NRZ serial data may be transferred from the accumulator of the ACU

to an external device through the execution of an accumulator right
cycle (ARC) instruction. Additionally, the output of the accumulator
is made available on the common output bus during the execution of an
INS instruction. This feature allows the system user to perform an

exchange operation between the contents of an external register and the

machines accumulator if so desired. Timing is as shown in Figure 3.18.

It should be noted that no device.address is provided in conjunction
with this instruction. Therefore, all serial output data transfers must
be preceded by a SBL (set bi-level) order to select a particular device
or register as the data sink. This instruction would be followed by an
ARC (or INS) order as indicated below:

SBL===- (register ready)
-z====== (register busy)=- JMR

ARC (or INS)

Note that there is no special operation code in the ACU dedicated to a

serial output instruction. Whenever an ARC or INS order is executed,
the accumulator output is serially placed on the l.s.b. of the common

output bus. Since the ARC instruction is frequently used for internal

machine operations, it is important that logic in the IOU reset any

bi-level that specifies a serial output transfer immediately following

the completion of the transfer.

53

As soon as the ACU fetches and decodes the accumulator right cycle

instruction, the ARC code is forced to the interface informing the external

device that this order is being executed. A data gate is supplied to

the I/O during the interval when the ACU is placing the NRZ output

stream on the common output bus. Transfer is performed l.s.b. (A15)

first. The first bit is transferred into the external register using

the first CLKC pulse after the start of the data gate. Other sequential

bits are accepted as long as this gate remains true. Upon completion

of the transfer, logic in the IOU should automatically reset the bi-

level in question. As an option, the operation may be performed by

executing a RBL instruction. The number of bits transferred to the

external device is a function of the number of shift positions (N)

specified in the ARC instruction field.

Skip on External Instruction

The Skip on External (SKE) instruction is used to test the state

of indicators (bi-levels or discretes) external to the ACU. Signal

timing is as shown in Figure 3.19. Operation is as follows:

Shortly after the ACU fetches and decodes this instruction, an

SKE code is forced on the I/0 function control lines. These lines are

maintained in this state until the instruction execution is completed.

The I/0 unit or peripheral hardware attached to the ACU decodes this

information to develop an "SKE in progress" control signal.

The SKE instruction contains an 8-bit immediate device address field

that specifies the particular indicator to be tested by the external

hardware. The immediate device address (DA) may be modified by the ACU

to form an effective address EDA = (SR + DA) mod 28 if indexing is

specified. During the time interval when the ACU is forming the EDA,

the output of the ACU operator (adder) is gated onto the common output

bus. An address gate control signal is simultaneously generated by the

ACU hardware during this two byte interval. This gate is used by the

external device to control the clocking of the EDA into the appropriate

peripheral logic.

54

TO T4 T5 T6 T7 TO

CLKC

CLKD

FUNCTION CODE

ADDRESS GATE

RESPONSE
TESTED BY ACU

OUTPUT BUS] BYTE 1 T YE 2

BYTE 1 = L.S. BYTE
RESPONSE: IF READY OR INDICATOR TRUE
NO RESPONSE: IF BUSY OR INDICATOR FALSE
IF ISF = 1, CODE WILL REMAXN HIGH THRU T3

Figure 3.19. SBL, RBL, and SKE Timing

The external hardware initiates a test of the specified indicator

during the next clock interval. If the indicator is in a "true" state,
a response signal is transmitted to the ACU over the common response
line. If the indicator being tested is in the false

state, no response is transmitted to the ACU. The ACU examines the

response line at the appropriate time to determine whether the next
instruction in sequence should be executed (external true = response

received) or skipped (external false - no response received).'

Set Bi-level and Reset Bi-level Instruction

The Set/Reset Bi-level instruction is used to set or reset a

discrete or bi-level in.the peripheral hardware. Signal timing is as

shown in Figure 3.19.

These instructions operate similarly to the.SKE instruction with the

exception that an external bi-level or discrete is controlled (set or
reset) rather than being tested. The SBL/RBL instructions may best be
thought of as a test, control, and skip order. That is to say, some
external device is first tested to ascertain its availability. Based
upon this test, the device is either commanded to a new state (if

ready) or left undisturbed (if busy). The ACU is notified whether or
not the command has been accepted by examining the response sent from

the peripheral unit.

Immediately after the ACU fetches and decodes one of these instruc-

tions, the proper I/O function code is forced to the interface, i.e.,
SBL or RBL. Decoding of these lines at the peripheral device effectively
form a SBL or RBL "in progress control signal".

As in the SKE instruction, the immediate device address field of
the instruction word may be modified to form an effective address EDA =
(XR + DA) mod 28 if indexing is specified. During the time interval

when the ACU is forming the EDA, the output of the operator (adder) is
gated onto the common output bus. This information is gated into the

appropriate peripheral logic during the period identified by the address
gate control signal.

56

As mentioned previously, this instruction may be used to initiate

the transferral of data into an external register. For this class of

operation, a response is needed to inform the ACU whether or not external

register is ready to accept the command. For bi-level or discrete set/

reset operations, the busy/ready test is superfluous since the bi-level

register is always ready to accept new commands. Because of the mechan-

ization of the instruction, it is still necessary to return a positive

response signal to the ACU.

The response signal is transmitted to the ACU during the clock

period immediately following the fall of the address gate. If a

positive response.is received, the next instruction in sequence is

executed else the next instruction in sequence is executed.

Program Restart Following Reconfiguration

After a reconfiguration takes place, the following actions are performed:

o The DPA will be automatically sequenced to take the

first instruction from ROM memory location 00H . This is

performed by hardware.

o The program may be written to utilize the "state" of the

newly reconfigured DPA. (Which units are on or off of the

redundant set.) This information may be input to the A and Q

registers by performing a TRC instruction. The configuration

of the message in the registers following completion of the data

transfer is shown in Figure 3.20.

o The software must be programmed such that the DLY instruction

is executed no earlier than 97.60 msec or later than 100.04 msec

after initialization. Failure to do so will result in a timing

fault being registered in the RCU.

o There are no other requirements or restrictions.

The program will then restart with initial conditions and proceed until new

fault messages are generated and further reconfiguration occurs.

57

9
AC

U
A

o

AC
U

B

.O
A

C
U

C

<
0

IO
U

B
C

+

3 OL

I
O
U

C

C
D

DB
S

A

,"

DB
S

B

R0
1

A

r+

R
01

B

R0
2

A

R0
2

B

RA
M

A

0
RA

M

B

RA
M

.C
--

I

RA
MI

D

c

P
1

z
RA

M
E

o

RA
M

F

DS
TM

I

D)
ST

M1
2

.A
BC

OS
CA

F

PS
CB

F

DS
TA

1

DS
TA

2

DS
TB

1

D
ST

B2

--

r
-h

0
 , c

D

-

)
-

)
Q

C

o
t

"
r-

r

"
--

C
D

 C
)

-
l

o
-
 .
.
.,

¢
.
Q

= 1

3
S (D

c

3.6 ACU BITE

The ACU BITE (Built-in Test Equipment) features included as
hardware to facilitate failures to the ACU (or ACU/IOU combination) are
as follows:

o Power failure. When the ACU is turned on by the
RCU, logic power should be applied to all of the circuit
elements in the unit. If the correct voltages are not
being applied to the logic in the modules, the BITE signal
assumes a logical zero condition denoting an inoperable
unit. This type of failure could be caused by a faulty
switch/regulator device or due to an excessive current
drain of a failed circuit element.

o Illegal Instruction Decode - Execution,of any unused instruction
code is a fault condition. Receipt of a Delay Advance signal
when the ACU is not executing DLY. (Also see Incorrect
Program Timing, below):

o Illegal Microtiming Counter State - Entry of the MTC to.state
T15 is a fault condition.

o Incorrect Program Timing - The system program may be operated in a free
running mode (Mode 1) or be forced into external synchronization by
the hardware (Mode 2). The hardware program timer will be wired as
follows:

o Program Cycle Time = 100.04 milliseconds per loop
o "Window" location, 97.60 msec - 100.04 msec

The effect of this is as follows:

o The program is expected to have executed an ADVance
instruction no earlier than 97.60 msec and no later than
100.04 msec after initialization. If the DLY instruction
is executed outside of these limits, a fault will be
registered in the system.

59

o If the DLY instruction is executed prior to 100.04 msec,

the program will be transferred out of the ADVance state

at the 100.04 msec point.

o If the DLY instruction is executed late, the program will

be transferred out of the ADVance state concurrently with

the execution of the instruction.

Thus, if the software is properly timed (within the tolerances stated) the

system will cycle exactly at the 100.04 msec rate and no timing faults will

be registered.

In addition, there may be system faults, detected by software. The

extent of these fault detection methods are limited only by the ingenuity of

the programmer and the memory capacity and system cycle time they consume.

The fault signal to the RCU for software initiated (detected) faults is SBL 01

60

4.0 DPA MEMORY SYSTEM

The DPA is designed to operate with either solid state or plated

wire memory units. Four different types of memory units are available

for use with the DPA, namely:

Solid State Read Only Memories (ROM)
Solid State Random Access Memories (RAM)
Solid State Alterable Program Memories (APM)
Plated Wire Memories (PWM)

The organization and operation of each of these memory modules are

described herein.

ACU-Memory Bus Structure

Communication between the system ACU's and memory modules is via

a redundant bus system. All address, data, and control lines are com-

patible with all of the modules cited above. A block diagram showing

the interconnection of the system ACU's and memory modules is provided

in Figure 4.1. Like the other redundant elements in the DPA, the dual

redundant memory bus system is handled as a switchable element. Only

one of the buses is assigned. an actve status at-by poovl,in time. The

other is held in standby redundancy. A complete description of the signal

flow and timing over this interface is provided for in the detailed para-

graphs to follow.

4.1 Read Only Memory Units (ROM)

The ROM's provide the user desiring an all solid state system with

an element to store the DPA program as well as other fixed parameters

and system constants. Like the other elements in the DPA, the ROM's

are modularized to facilitate simple expansion and/or replication for

redundancy purposes. Each basic ROM module is designed to accommodate

between 1024 and 4096 words of storage. Through minor redesign the

module can be expanded to a capacity of 8192 words.

All ROM modules communicate with the system ACU's over a common

dual redundant bus. Memory data output from the ROM modules is via a

16-bit wide communication interface. A block diagram showing the inter-

connection between the ROM's and ACU's is provided in Figure 4.1, The

number of ROM modules attached to the bus for any particular system appli-

cation is a function of the required system storage capacity and the system

reliability/redundancy requirements. The ACU's are capable of addressing

up to 32,768 words of active read-only memory. As currently designed, the

RCU is capable of controlling up to four separate ROM modules. Power gating

is employed in these devices to minimize the overall system power consumption.

61

IkoV\ EVF\eL.F.. (1)

RA _IJA Z (is)-

.N . I- W., , .

vnkx C e

A)

CLKCC~~ TT IT

r% 8f-F 'I.).

. . . o- a

- -- c' \-. e o . A .t M M m

L..% .n (. _ _ . -. v.. A o n

s -wstG >

__o__ o_ - -t -.

\Cs won At-t? I(13IA~t ClS _ _ _______ _____________41-** ~.2L*L. ... n
__________ t:" p.'~~~VI ____________________

1X t-

----- ~--- -- -- ~- ---- *-- i-. - -I--- .r i _ : . n U;

(tat

-- u . I . eoacaL-,

i if

Po or's

Rom'. :M1~ W I;5 (A aL

.o 4.Z56
X4 i

'T--

rj I rsm ski

(se

(gg -- -- i -:'

- ;'onis (-- -- i
mgcomE o

r-- - -,.- '' C ri .i.~:_.I I I d
SUT.M

c- LE:

W~PL\I ~SLUITC ~ ~ e~d~ one~: P:

FADAR. 4.2,

Internal Organization

The internal organization of a typical 1024 word module is shown

in Figure'.4.2 Each 1024 word module contains sixteen 256 x 4 bi:-polr

':fieTld frgrammable LSI ROM' chips. The module Ai orgaiied into four : :

256 word x 16-bit banks of storage. Each 256 word bank is mechanized

from four chips that are addressed and power switched as a group.

Memory data outputs from each of the four banks are wire-or'ed internally

and sent to the memory data output bus as a common 16-bit word. Pro-

visions are included in the design to allow the storage capacity of a

basic ROM module to be expanded to 2048 or 4096 words. This js accom-

plished by replicating all elements within the module with the excep-

tion of the input bus/cross strap circuits, output bus drivers, and

switch/regulator device.

Addressing and Control

Address and control information is transferred from the ACU's to

the ROM's over a common dual redundant bus interface. Cross strap

circuits located within each module maintain the system integrity in

event of a component or single bus failure. Only one of the buses is

assigned an active status by the RCU at any point in time. Receiving

elements connected to the active bus are placed in a powered on status.

The other receivers are powered off. Each ROM module connected to the

bus receives fifteen address lines and a ROM enable/read request signal

that originates in the powered on operating ACU..

The most significant bits of the fifteen memory address lines are

decoded internally to provide for the first level module and sub-module

selection. Connection of memory address signals to the module and sub-

module decode gates are made via jumper wires on the multilayer boards

based on the module size (word capacity) and the assignment location of

the particular module within the memory system. Final address selection

is accomplished by the bank decoders which select a specific set of LSI

ROM chips as the memory source.

The ROM enable signal serves two distinct functions. First, it is

used as a control signal to power gate the selected 256 word ROM bank

to the on condition. Secondly, it is used to enable the transmitting

tri-state elements of the selected module to the low impedance (active)

state. This causes the selected ROM module to gain control of the memory

64

data output bus for the memory cycle .of interest. Sixteen data bits

are placed on the memory output data bus during the duration of the

ROM enable signal.

ROM Cycle Timing

A diagram showing the signal timing relationships for a typical ROM

memory cycle is provided in Figure 4.3. The ROM enable line is switched

to the "enable" condition concurrently with the transition of the memory

address lines to the selected address. This causes the selected memory

chips to be power gated to the on condition. A sixteen bit memory data

word is placed on the memory. data'output bus~within TBD nanoseconds after

the rising edge of the ROM enable signal. It is maintained until the

fall of the ROM enable signal at which time the bus is released.

RCU ROM Assignment

Because of the nature in which the ROM's are utilized in the system,

each module must be minimally duplicated for a system requiring standby

redundancy. Each module contains program code for a specific segment of

the total ROM. RCU assignment of the ROM modules is best explained by

an example. Suppose the system requirement is for 8192 words of program

memory. Further, suppose that the modules must be divided into 4096

word groups and have single standby redundancy to meet the reliability

objectives of the program. Thus, for the particular application, the

DPA would contain a total of four 4096 word ROM modules. Two of the

modules, Al and A2, would contain redundant program code for program

addresses 0 - 4095. The other two modules, B1 and B2, contain redundant

program code for memory locations 4096 - 8191. Thus, the RCU can con-

figure a working program memory using the following module combinations:

Al, 81
Al, B2
A2, B8
A2, B2

RCU assignment is accomplished simply by sending a power enable signal

to one of the A elements and one of the B,elements. The only require-

ment is that power enable signals Al and A2 and B1 and B2 be mutually

exclusive. This requirement is handled by the logical mechanization of

the RCU.

65

m IN

I I~l

0 ;/L c
.........

- -7

~~-r
Ak~~N~4~flkI 4-~

ROM Built-In Test Equipment (BITE)

Two BITE features are included to facilitate the isolation of

failures in a ROM module. Whenever the module is turned on by the

RCU, logic power should be supplied to all of the non-power gated

elements in the unit. A BITE signal, available from the ROM module,

notifies the RCU that the correct voltage is being applied to the

circuits within the module. A failure in the switch/regulator device,

or an excessive current load due to a failed circuit element, would

cause this signal to assume a logical zero condition denoting an

inoperable unit.

An additional technique for failure isolation Is achievable by

means of a special ACU initiated diagnostic test. The final memory

word in each ROM module (i.e., address location 2n-l, where 2n is the

size of the basic module) is dedicated to a zero check sum function.

This cell contains the proper data word such that the arithmetic sum

of the entire module contents are equal to zero. A check sum of the

ROM resulting in an answer other than zero indicates a failed unit.

4.2 Random Access Memory Units (RAM)

The solid state RAM units function as the aeectrically alterable

working scratchpad for the DPA. Additionally, these memories may be

used to store program instructions that represent modifications to the

ROM program. For a satellite application, this feature allows ground

commanded program patches to be input to the system after launch into

orbit.

Each RAM module is designed to accommodate either 256 or 512 words

of storage. Data communication between the RAM and ACU is via a four-

bit byte interface. All RAM modules communicate with the system ACU's

over a common dual redundant bus system. A block diagram showing the

basic interconnect structure is provided in Figure 4.1.

The number of RAM modules attached to the bus for any particular

system application is a function of the required scratchpad storage

67

capacity and reliability/redundancy requirements. The system ACU's are

capable of addressing up to 32K words of random access memory.

As currently designed, the RCU is capable of controlling up to

six RAM modules, any four of which may be assigned as an active element

during any point in time.

It should be noted that the RAM devices are constructed of volatile

storage elements. Removal of system power destroys the contents of

these memories; therefore, the use of these devices to store program

instructions should be limited to those instances where ground initiated

changes are absolutely mandatory.

Internal Organization

The internal organization of a typical 256 word RAM module is shown

in Figure 4.4. A 256 word memory unit is constructed of seventeen 256 x

1 LSI RAM chips. Sixteen of the chips are used for the storage of a

basic DPA word and the remaining chip is used for parity. Essentially

the memory is organized in a 1024 x 4 array. A sixteen bit ACU operand

is written into or read out of the RAM in four 4-bit bytes. The eight

least significant bits of the memory address lines are distributed to

all chips in the module and function as the word address. Four-bit

byte selection is mechanized by the decoding of the two-bit micro-timing

signals that are supplied from the operating ACU. The memory parity

bit is read from, or written into, the seventeenth chip during byte

four time.

Each group of four LSI memory chips comprising a single bit of the

four bit wide interface have their collector outputs wire-or'ed internally.

Expansion of the memory element to a capacity of 512 words is accomplished

by adding seventeen additional RAM chips to the basic module. Each 256

word bank of memory is selected by unique chip enable signal.

RCU Page Assignment

The RAM modules are unlike the ROM modules from the standpoint of

locatibility within the memory system. Any RAM module can equally well

serve as the storage element for any segment of this class of memory.

68

GS 2

te-mQ4 a''Le

g frMPATwo Cj COO

I.l
-.046h S 25 0-) ~ L~ kb

Mkss
~JP ~ 2 P, 7

ja

l\I

topa

8 e.~L c R. u

pr~dlG;Ca d/ Jc(a)14 -U7F~~rgI

RI PU, P\B

Li4

ir-i

_~D I- I i i
alai Go's!c'~a~;;elBa~'

Ft t, a-

~~w n --- (..---....--.

)s\

This capability permits one to achieve an equivalent system reliability

with fewer total standby modules than would be required for the ROM

devices. Consider a system containing six 256 word RAM modules where

four such modules are required to mechanize a working DPA. There are

a total of = 2- or 15 ways of configuring the six modules into a

working arrangement. Assignment of each RAM to a particular location

in the scratchpad memory system is performed by the RCU. For this

particular example, the RCU selects and powers on four working modules

to make up the system scratchpad. Each of the four modules are sent

a unique two-bit page assignment code by the RCU to specify their par-

ticular placement in the memory system. Upon being addressed by the

ACU, the most significant bits of the memory address field are compared

with the page assignment code to perform the module select function. As

currently designed, the RCU can service up to six RAM modules, any four

of which can be powered on as active storage elements at any particular

instance in time.

Addressing and Control

Address and control information is transferred from the ACU to the

RAM's over a common dual redundant bus interface. Cross strap circuits

located within each module maintain the system integrity in event of a

component or single bus failure. Only one of the buses is assigned an

active status by the RCU at any point in time. Receiving and trans-

mitting elements connected to the active buses are placed in a powered

on status. The other bus interface elements are powered off. Each

RAM module connected to the bus receives fifteen address lines, two

micro-timing lines, a four-bit data byte, CLKC signal, read/write mode

signal and a RAM enable signal from the powered on operating ACU. The

functional significance of each of these signals are described below.

Address Lines - Fifteen address lines are supplied to the memory

system to select the particular memory word to be operated upon.

The most significant bits of these lines are compared with the RAM

page assignment code and provide an internal module (first level

chip select) function. Connections of the proper memory address

70

signal to the comparitor network are made by jumper wires on the
multilayer boards based upon the module storage capacity. Second

level chip selection-to a 256 word group is made internally by the

bank decoders. The eight least significant bits of the address

field are sent to all chips within the module to select the par-

ticular word of interest.

Micro-timing Address Lines - The MTC lines, in essence, provide the

two least significant address bits for the RAM memory which is organ-

ized in a 1024 x 4 array. These lines are decoded internally to

perform final chip selection to the byte level.

Read/Write Mode Control - This signal specifies whether the memory

operation is to be a write or read function. A write operation is
signified by a true level for the duration of the write cycles. At
all other times, it resides in the false or read state.

RAM Enable - This lines serves the-function of signaling the RAM
modules that they are being selected as working memories for this
particular cycle. Additionally, it permits the selected RAM to

connect to the memory data output bus during transfer of information

to the ACU.

CLKC - ACU timing signal CLKC is sent to the RAM modules to assist

in two internal functions. During write operations, the CLKC signal
is used to generate the write enable signal for the RAM chips.
During read operations, it is used as a clock for the parity

checking operation.

ACU Data Byte - Four bits of data are supplied to the RAM module

during each write operation. Data is made available to the RAM

module I nanoseconds prior to the rising edge of the CLKC signal.

Memory Data Output - During read operations, the selected RAM

module places a four-bit data-byte on the memory data output bus

nanoseconds after the change in the micro-timing portion of
the address. The transmitting - . bus drivers of the selected
module are switched to the low impedance (active) state and gain
control of the bus only during the period of time when the RAM

71

enable signal is present. All other transmitting elements phy-

sically connected to the bus are maintained either in the high

impedance (non-active) state or are powered off. Note that the

four-bit RAM data byte is placed on the least significant four

lines of the sixteen line memory data output bus.

RAM Cycle Timing

A diagram showing the timing relationships for a typical RAM read

or write cycle is provided in Figure 4.5. Information is always trans-

ferred into or out of the RAM as four 4-bit bytes. The RAM enable and

read/write mode control signals are maintained in the same state during

the entire four byte cycle. The byte being operated on is controlled

by the state of the micro-timing counter lines.

RAM BITE

Two built-in test features are included to facilitate the isolation

of failures in a RAM module. A common built-in test signal available

from the RAM is used to notify the external hardware (RCU) of either a

power failure internal to the module or of a memory parity check failure.

When the module is turned on by the RCU, logic power should be

applied to all of the circuit elements in the unit. If the correct

voltages are not being applied to the logic in the module, the BITE

signal assumes a logical zero condition denoting an inoperable unit.

This type of failure could be caused by a faulty switch/regulator

device or due to an excessive current drain of a failed circuit element.

Memory parity is checked each time a sixteen bit DPA word is read

from memory. This operation is performed at the end of the byte time

four. Whenever this parity check fails, the BITE signal assumes a

logical zero condition. This signal is maintained in the fault con-

dition until the next memory cycle is initiated at which time the

parity error flip-flop in the RAM module is cleared. The momentary

parity error indication from the RAM BITE lines are held in latches

located in the RCU. For a system not having an RCU, this error in-

dication would be sent to a latch located in the telemetry system.

72

............. _ _L I

I' -r
-Tes

WRE Cv Lu~

.- .7 == == i

4.3 Alterable Program Memory Units (APM)

The APM units are provided for use during the system testing and

program debug stages of a developmental program. They serve the same

function as the ROM units, that being the storage of the system program

and constants. Unlike the ROM's, these units are constructed of elec-

trically alterable volatile storage elements that may be reprogrammed or

changed as desired. Programs are loaded into the APM's via a paper

tape reader. Program patches may be made to the contents of the APM

via controls on the programmer/maintenance console. The APM and ROM

modules are physically interchangeable.

The APM module consists of a 2048 word (or 1024 word) by 16-bit

dynamic random access memory. The memory element used is a 1024 word by

1-bit MOS-LSI circuit. The memory elements are considered dynamic due to

the fact that each bit of storage consists of a capacitor which is subject

to information loss due to leakage currents. Therefore, the memory must be

periodically refreshed.

Each time the APM module is powered on, a program must be loaded from

an external source. This is accomplished by using the same 4-bit data bus

that is used to write into the random access memory. The 16-bit word is

loaded in four 4-bit bytes under control from the ACU. The two MTC lines

are decoded to determine which byte is being loaded into memory. The load

timing diagram is shown by Figure 4.6. The same write request signal that

goes to the RAM is given in order to enable a load operation, except that

the ROM enable signal goes true rather than the RAM enable signal. The

information is actually written into the memory during the write strobe.

The address lines must be set up 500 nsec prior to the write strobe in order

to insure.that all internal decoding is accomplished to prevent any data

from being written into an incorrect address.

Refreshing of the memory can be accomplished in several ways. Refreshing

of a row of words occurs whenever there is not a read cycle. The selected

row is determined by the five least significant bits of address. Therefore,

74

in a 1024 word, 16-bit memory, there are a total of 16,384 bits consisting

of 32 rows with 512 bits per row. Each refresh operation refreshes one row

of 512 bits. Thirty-two refresh operations are required to refresh the

memory at least every 2 msec. During a load cycle, the row to be refreshed

is determined by the five least significant bits of the address bus. Other-

wise, the row is selected by a 5-bit refresh counter. This counter is

incremented only at the completion of a row refresh operation which was

under control of the counter. If, for any reason, the memory were to be

loaded continuously, and in sequence, a new row would be refreshed each time

a complete, 4 byte word is written in. This means a row would be refreshed

every 4.8 psec and that all 32 rows would be refreshed every 153.6 psec.

Ordinarily, loading will be from the paper tape, which is relatively slow.

This means that there will be plenty of time between words for many complete

refresh operations to occur, since only 38.4 Usec are required to refresh

32 rows under control of the refresh counter. During read operations, only

38.4 psec is needed out of 2 msec for refreshing.

Each APM module also decodes all 15 bits of the address bus, permitting

up to 16 modules to be used for a total of 32,760 words. The five most

significant bits of address are decoded along with the ROM enable to enable

the module for a write or read operation. The ten least significant bits of

address are connected to all of the memory elements and are internally decoded

in each chip. The output of each memory element consists of 1-bit driven by

an open collector circuit. This, in turn, is connected to a sense amplifier

which converts the signal to a TTL level for driving the bus drivers.

Figure 4.7 is a timing diagram for a read operation. The timing criteria is

the same as for the ROM in that the valid data must be on the bus 300 nsec

prior to the trailing edge of CLKC.

75

-z 0 0. m

7w i -'r Ci. -Tis o 1 IIPN6 r.00K 1 CC

S-1

I~~~~ __TA I_/,__-r__c

-. *14 to I m___-

I.t-L

rz5

IT- "0l-

Z. Ii

A r--E S I NC.

2.0V5- 1 < _____ _____ _____

M144~I .
MtO M Z/V,81I.

rl~fz C-5og wRwklIIV -2

AA/ PAM AWf~~ PA I~U

4.4 Plated Wire Memory Units (PWM)

The PWM's provide the user with a memory system which may be used

as either a read-only or a read-write memory and thus may replace any of

the other memory types for either ground operation or spacecraft use. The

PWM's are interchangeable with the other memory types in both a physical,

functional and electrical sense. The PWM's are modularized to allow

expansion for memory size and/or replication for redundancy purposes.

Each PWM module is designed to accommodate either 1024 or 2048 words

of storage. In 256 word increments, the PWM is designed to either allow or

prevent write into memory from the DPA. This is accommodated by external

jumpers in a connector. The same connector is used for memory load, which

can occur into any cells.

The communication with the system ACU's occurs over a common dual

redundant bus, as with the other memory types. All interfaces are also

identical to those for the other memories. The PWM contains the features

of both a RAM (page numberaddressing, parity check write/read/compare and

of a ROM.

Note that (unlike a RAM) the memory storage in the PWM is non-volatile.

This means that removal and reinstatement of system power will not cause either

program or read-write scratch pad memory to be lost. This feature can be used

to advantage in many systems. On the other hand, since the program memory is

stored as magnetic domain states and not as physically altered conditions (as

in a ROM), severe nuclear or electro-magnetic pulse events could alter the

program words. These features must be considered in the application of the PWM,

along with the power, reliability and other trade-offs.

78

5.0 IMPUT/OUTPUT UNIT (IOU)

The input/output unit (IOU) functions to provide the interfaces
between the DPA and all peripheral equipment (external world). The only
exceptions are the direct interfaces with the RCU (command, telemetry and
clock source), and the electrical power, which interfaces with all units
of the DPA directly.

The IOU is designed so that all input/output functions are under
central processor (program) control. There are no program interrupts
through the IOU. All functions must wait for recognition by the software.

Figure 5.1 is an overall block diagram of the IOU showing all of the
functional blocks and their interrelationships. All input and output inter-
faces are modular so that the IOU may be relatively optimally suited to its
particular application.

The maximum capabilities have been selected relative to estimated
needs for spacecraft attitude control subsystems.

5.1 Functional Requirements

The functional requirements of the various IOU blocks are specified
by block in this section.

5.1.1 Control

Figure 5.2 is a block diagram of the IOU control logic. The control
generates clocks, instructions, and addresses for the internal IOU functions.
Figure 5.3 is a timing diagram for the control functions.

The master clocks, PTCBO-PTCB3, are supplied from the RCU. These clocks
have a period of 1.2 usec, which is equal to one T time in the ACU. These
clocks are decoded to form the CLKC, CLKCW, and CLKDW functions. The wider
clock pulse widths (CLKCW and CLKDW) are necessary for clocking 54L/74L series
flip-flops. CLKC is divided by a factor of 8 to form the shift clocks for
the peripheral serial interfaces. These clocks have a period of 9.6 psec, or

79

I A / D PROGRAM - d
anaooq - CYCLE -- +- adv

inputs CONVERTER TIMER
...-- T ..M fault

serial SERIAL

word
CONTROL -:

oates

data in SRA
SERIAL DATA

data out -"- byte/serial
i BUFFER MULTIPLEXER data innut

clock BUFFER MULTIPLEXER

command COMMAND

word te-NPUT byte/serial
INPUT - data outut

clock
address
code

frame syn -- i- clocks
word gate--v TELEMETRY clocks

S- .rCONTROL reset
clock .-- OUTPUT instrutructionction
telemetry< __ _ (addresses _-instruction

F code

DISCRETE

INPUTS

BILEVEL ------ response

INPUTS ;

BILEVEL I FIGURE 5.1

OUTPUTS _IOU BLOCK DIAGRAM

80

Data Input Undecoded

(SMO-SM3) Address
ADDRESS (AO-A3)

BUFFER
Decoded

AND I Addresses
Address Gate_ I (DAO-DA15)

(ADGT) DECODER

I Decoded
I Addresses

(DDAO-DDA15)

Master Clocks CLOCK -CLKC

(PTCBO-PTCB3) _ DECODER D CLKCW

> CLKDW

SERIAL --- > CLKI
SHIFT CLOCK
GENERATOR - CLKP

(divide by 8) --- >CLKO

INSTRUCTION ---> INS
RES EREST INP

RESPONSE - -ES DECODER INP

ADGT ,STIMULUS OUT
PTCBO Instructio AND

PTCBO GENERATOR Code SBL
PTCBI (FCNO-FCN2) . BUFFER RBLRBL

SKE

Initial Reset
(INRST) - MR

FIGURE 5.2

CONTROL BLOCK DIAGRAM

81

PTCBO

PTCB1

PTCB2

PTCB3

CLKC F- r n - - -- --

CLKCW

CLKDW

I CLKI

CLKP (See Fiqure 7)

CLKO

Instructions

ADGT

Addresses
(PTCB1)

REST
--CM <-- (CLKC)

Response Tested in ACL

FIGURE 5.3 CONTROL TT IING DIAGRAM

a frequency of approximately 104 KHz. CLKP is the clock that drives all
peripheral serial transfers, while CLKI is used in the IOU for serial input,
and CLKP is used in the IOU for serial output.

An 8-bit address is transferred to the IOU from the ACU over the
internal data bus (SMO-SM3) in two 4-bit bytes. A separate address gate
(ADGT) from the ACU defines the presence of a valid address on the bus and
is also used to initialize the execution of instructions in the IOU. This
is done by having the address gate generate a response stimulus (REST) 600 nsec
after the trailing edge of the address gate. The response stimulus is gated
with the appropriate instructions and decoded addressee to execute the in-
structions and also enable any response that may be sent back to the ACU.
The four most significant bits of address (A4-A5) are decoded into 16 direct
addresses (DAO-DA15), while the four least significant bits (AO-A4) are also
decoded into 16 direct addresses (DDAO-DDA15). By ANDing the DAx addresses
with the DDAx addresses, any one of 756 addresses may be selected. The address
assignments and associated functions are summarized in Table 5.1.

The instructions are decoded from three lines (FCNO-FCN2) from the ACU.
Their functions are defined in section 3.3.4, and also in the descriptions
of the remaining IOU functions.

5.1.2 A/D Converter

Figure 5.4 is a block diagram of the A/D Converter, while Figure 5.5
is a timing diagram of the basic timing functions.

The converter is a successive approximation type with a maximum of 32
seimi-differential analog inputs. These inputs are selected by IOU address.
The conversion resolution shall be 12 bits and accuracy shall be +0.1%. Con-
version time is 140-150 psec. Signal range is +5.0 v with negative values
represented by two's complement notation. Overvoltage range is +15 v.

The conversion process is initiated when one of the 32 analog inputs is
addressed and a set bilevel (SBL) instruction is given. If the converter is
not busy, a response is sent to the ACU, the address is stored, and the

83

Table 5.1 - IOU Addresses

Address Function Command Response

MSB LSB
OOxxxxxx 80 Bilevel Outputs SBL/.RBL Yes
01OOxxxx

O101xxxx 16 Serial Outputs SKE/OUT Yes

Ollxxxxx .32 Serial Inputs SBL/INP Yes

lOxxxxxx 64 Bilevel Inputs SKE Yes

llOxxxxx 32 Discrete Inputs SKE/OUT/INS Yes/Yes/No

lllxxxxx 32 Analog Inputs SBL/INP Yes

Dedicated Discretes

11000000 Command Input INS No

11000001 Telemetry Maj. F.S. SKE Yes

11000010 Telemetry Min. F.S. SKE Yes

11000011 Telemetry Buf. Status SKE Yes
Telemetry Load SBL/RBL Yes

Dedicated Bilevels

00000000 Program Counter
Window Test SKE Yes
Sync Bilevel SBL Yes

OO00xxxx TOD Input INP No

00000001 ACU Detected Fault SBL Yes

00000010 Peripheral Bus Select SBL/RBL Yes
0 = Bus A 1 = Bus B
(External jumper)

84

data
gate clqck

start
address TMING PARALLEL TO BYTE

instructions - CONTROL read CONTROL CONVERTER -I data (ADO-AD3)

reset - REGISTER

response - data

BIT TIME
clock CONVERSION REGISTER M
(104 kHz) GENERATOR (12 bit)

select data

VOLTAGE
BINARY CURRENT SOURCE

REFERENCE
analog I ANALOG "

signals
MULTIPLEXER(32 max) MULTIPLEXER COMPARATOR

BUFFER

FIGURE 5.4

A-D CONVERTER

BLOCK DIAGRAM

Bit Times 0 1 2 3 4 5 6 7 8 9 10 11 .12 13

CLKP I- F -_, J _

START (response)

Data Ready ""_
Q2

C3

C2

P0 I I

P1

P2

-------- P3- P11 --------

P12

P13 5 I

FIGURE 5.5 A-D CONVERTER TIMING DiA.RAM

converter logic is initialized. During the conversion process, the IOU is

free for performing other functions. When the conversion process is

completed and the ACU is ready to accept the data, an INP (data input) in-

struction is given along with the address of any analog channel. If the

conversion is completed and the data ready, a response is given to the

ACU and the data is shifted to the ACU in 4-bit bytes, least significant

byte first. The 12-bit word is left justified to form a 16bitt word with

zeros filling the least significant end of the word, The byte data transfer

is shown in Figure 5.8.

5.1.3 Serial Data-

Figure 5.6 is a block diagram of the serial data control function.

Figure 5.7 is an overall timing diagram for serial data transfers, while

Figure 5.8 is an expansion of Figure 5.7 showing the byte data transfer

between the ACU and IOU. The serial interface between the IOU and the

peripheral equipment is defined in Section 5.2.

A dual, redundant bus system is used between the IOU and all peri-

pherals for serial data transfer and the shift clock. One common bus is

used for all serial input data with the appropriate bus driver being power

gated on by the selected serial input bilevel gate. A separate common bus

is used for all of the serial output data. The data is routed to the peri-

pheral which is selected by the appropriate serial output bilevel gate. All

serial data transfers are 16-bit words, least significant bit first,.with a

clock rate of 104.167KHz. The serial bilevel gates are used to address the

peripherals and also act as word gates which are 16 clock periods in duration.

A serial output is initiated by addressing one of the 16 serial output

bilevel gates (SBLO-SBL 15), and giving an output (OUT) instruction. If the

serial buffer is not busy, a response is sent to the ACU, and the address is

stored in a buffer. The ACU next loads the byte/serial buffer in four 4-bit

bytes. This is controlled by a data gate (DTGT) from the ACU which is 4.8 Psec

wide (4T times). After the data gate goes false, the OUT instruction goes

false. This causes the serial bit counter to begin counting at the 104.167 KHz

87

TIMING Serial Word Gate
CLKO T1 -- EICOUNTER (SWGT) SERIAL

INPUT

F BILEVEL , (SBLIO-SBLIIl)Start Stop GATESGATES

Address (32 max)
Address --- r -----

Instruction-, SERIAL

CONTROLReset

Address
Response Address---

SERIAL

OUTPUT
INPS OUTS

BILEVEL I (SBLOO-SBL015)

GATES
Address GATES

Instructios-. (16 max)

Clocks - BYTE/

Data Gate SERIAL
(DTGT)

Response BUFFER

Byte Data - Serial Data QutPut
Output - I (DATAO)
(SMO-SM3)

Serial Data Input
(DATAI)Byte Data ,

Input
(SDO-SD3)

,= FIGURE 5.6

SERIAL DATA

BLOCK DIAGRAM

88

INPUT
CLKI Ld L W i iK LJL

CLKP ... LLLJ LL _ .. f.._.

CLKO L . 1JJ

SBL I

Response

SWGT _ _

INP

c Response

DTGT

OUTPUT

.OUT

Response

DTGT

SWGT

FIGURE 5.7 PERIPHERAL SERIAL DATA TRANSFER TIMING DIAGRAM

INPUT

CLKC W.; _ , - , - - - .

I O. [-I.-I I - 1--1 --t --1 --- - - '
INP

ADGT

Response

DTGT

Byte Data Byte 2 Byte 3

OUTPUT

OUT

ADGT

Response

DTGT

Byte Data i Byte 1 te 2 Byte 3 Byte 4

FIGURE 5.8 INTERNAL BYTE DATA TRANSFER TIMING DIAGRAM

(Expanded from Figure 5.7)

clock rate. The counter enables a serial word gate which in turn enables the

addressed serial output bilevel gate and also switches the byte/serial buffer

from byte to serial operation, and gates the serial output clock (CLKR) to the

buffer. During this time, the IOU is free to perform other functions not
associated with serial data transfers. The status of the serial buffer may be

tested at any time byaddressing any serial output channel and giving a skip

on external (SKE) instruction. If the buffer is not busy, a response is

given to the ACU.

A serial input is initiated by addressing one of the 32 serial input

bilevel gates (SBLIO-SBLI31), and giving a set bilevel (SBL) instruction. If

the serial buffer is not busy, a response is sent to the ACU, the address is

stored in a buffer, and the serial bit counter begins counting. A serial

word gate is generated by the counter which enables the addressed serial

input word gate, switches the byte/serial buffer to serial operation, and

gates the serial input clock (CLKI) to the buffer. During this time, the
IOU is free to perform other functions not associated with serial data trans-
fers. When the ACU is ready to accept the input data from the byte/serial

buffer, it is tested to see if the buffer is filled by addressing the first

serial bilevel gate (SLIO, address 011000002), and giving an input (INP)
instruction. If the buffer is filled and ready, a response is sent to the
ACU. The ACU then sends the 4.8 psec wide data gate (DTGT) and unloads the

buffer in four 4-bit bytes. The byte data is routed through the data input

multiplexer which selects the data from the byte/serial buffer and routes it

to the IOU to ACU data bus (IOUO-IOU3).

5.1.4 Telemetry

Figure 5.9 is a block diagram of the telemetry output function. Figures
5.10, 5.11, 5.12, and 5.13 are timing diagrams for four different options of
telemetry applications.

The timing diagram in figure 0.10 shows a case where the telemetry data

(TMDIP) is a continuous, serial bitstream. The word gate (WDGT) is held in

the one state at all times. Whenever the telemetry empties one of the 256-

bit, random access buffers, the terminal count (TCI) from the address counter

91

MINFS Clock
MINFS ALTERNATING COUNTER
TLMCK " BUFFER CF R

WDGT CONTROL

Address

Write

SEnale 256 BIT
MINFS - BUFFER
TLMCK --
WDGT r .

Inst. CONTROL DPA Clk
Tele!etryAddress Reset SELECTOR SELECTOR Teleer

CLKC Outnut
CLKDW b LOGIC Write ED (TDI)

DTGT ---- 1 256 BIT
Response_---

WE BUFFER

SM3 Address

Reset

COUNTER

FIGURE 5.9

TELEMETRY BLOCK DIAGRAM

TELEMETRY OUTPUT

256 Bits

TLMCK FILJ L l L

TC1 _

TC2 -- --____

CF _

BUFFER LOAD

SBL

16, 16 Bit Word Gates

DTGT

RBL

CF

FIGURE 5.10

TELEMETRY TIMING DIAGRAM

COMSAT BREADBOARD
V

TELEMETRY OUTPUT

m, n Bit Word Gates

MINFS __ n

CF

BUFFER LOAD

SBL

m, n Bit Word Gates

DTGT nfl 1 1n - ..L.

RBL

CF

FIGURE 5.11

TELEMETRY TIMING DIAGRAM

GENERAL CASE

TELEMETRY OUTPUT
256 256

, n Bit Word Gates M --m- , n Bit Wd Gates-,"

WDGT - .

MINFS n -,

TCI (TC2) _

CF (C) _ --- _-

BUFFER LOAD

SBL

Sm - , n Bit Word Gates 2 5 6 n Bit Word Gates

DTGT

RBL

FIGURE 5.12

TELEMETRY TIMING DIAGRAM

SPECIAL CASE

mxn > 2E"

TELEMETRY OUTPUT

- n Bit Word Gate -

WDGT - - -

TLMCK _.. _- _ ._ , _

CF I

BUFFER LOAD

SBL

- -n Bit Word Gate

DTGT [,

Shift Clock . _LF.

RBL ._.

CF

FIGURE 5.13

TELEMETRY TIMING DIAGAM

SPECIAL CASE

n -16

for that buffer causes the telemetry output to switch over to a second

identical buffer. The ACU tests to see if a buffer is empty by addressing

a buffer status discrete (address 110000102), and giving an SKE instruction.

If either one of the buffers has been emptied, as the first one has been in
the above example, a response is sent to the ACU. The ACU may then load the

buffer by addressing the telemetry buffer (address 110000112), and giving a
set bilevel (SBL) instruction. This resets the buffer empty discrete, resets
the address counter for the buffer to be loaded, and sends a response to the
ACU. The buffer is then loaded serially from the ACU, 16 bits at a time,
with a word gate (DTGT) accompanying each 16-bit word. After the buffer has
been filled with 16 16-bit words, a reset bilevel (RBL) instruction is given
which disables DTGT to the telemetry buffers, again resets the buffer address
to zero, and gives a response to the ACU.

Figure 5.11 is a timing diagram of a more general case where telemetry
words are generally short compared to 256 bits and are accompanied by word
gates (WDGT) and a shift clock (TLMCK) from the telemetry unit. The total
number of bits required for one telemetry minor frame is less than 256 bits,
therefore, the minor frame sync (MINFS) is used to alternate between buffers
and set the buffer empty discrete. The loading of the buffers by the ACU is
the same process as the first example except that less than 256 bits may be
loaded.

Figure 5.12 is a timing diagram of a special case where a telemetry frame
may consist of more than 256 bits. This is a combination of the cases in
Figures 5.10 and 5.11 where either the minor frame sync (MINFS) or the address
counter terminal count (TC1 or TC2) are used to alternate between buffers and
set the buffer-empty discrete. These conditions are set up by connecting
jumper wires on the circuit board.

Figure 5.13 is a timing diagram for a special case where the telemetry
word lengths are 16 bits or less and the data rate is slow enough to permit
the ACU to respond and refill a buffer in the time between alternate words.
In this case, the 256-bit RAM's and address counters are each replaced by a
simple, 16-bit shift register. The trailing edge of the telemetry word gate
(WDGT) is used to alternate between buffers and set the buffer empty discrete.

97

A simpler ca se would exist where there is enough time between every

telemetry word for the ACU to respond and refill the buffer. In this

case, only one buffer is required, and the word gate trailing edge is

used only to set the buffer-empty discrete. If the telemetry word is less

than 16 bits, it is right justified in a 16-bit word from the ACU. The

remaining bits are ignored.

5.1.5 Commands

Figure 5.14 is a block diagram of the serial command input function.

Figure 5.15 is the associated timing diagram. The command input is relatively

simple since the serial commands consist of a single 32-bit word (CMDIN)

accompanied by a 32-bit long word gate (CMWG). The trailing edge of CMWG

sets a discrete that indicates the command buffer is full. The ACU tests

the status of the discrete by addressing the command buffer (address 110000002)
and giving a set bilevel (SBL) instruction. If the buffer is full, a response

is given to the ACU, and.a buffer bilevel is set which enables the buffer to
be emptied. The ACU then gives a serial input (INS) instruction along with a
word gate (DTGT) and the buffer contents are shifted serially into the ACU.
The ACU then gives a reset bilevel (RBL) instruction which sends a response
back to the ACU and resets the buffer bilevel which enables it to be loaded
by the next command word.

5.1.6 Program Cycle Timing

Figure 5.16 is a block diagram of the program cycle timer,while Figure
5.17 is a timing diagram of its operation in two different modes. There are
three possible alternate implementations for the counter:

o Program Cycle Fault Time-Out - The function of the timer here is
to verify proper software execution of a program major cycle by
performing a simultaneous hardware check on the cycle time. If
the software cycle is out of bounds in either direction from an
expected norm, a DPA fault is indicated. This function is central
to the fault tolerant machine concept. This is defined as mode 1
operation.

98

Comniand Input - SERIAL _FFER Command to ACU
(CMDIN) (32 Bits) (CMD)

Shift Clock

CMCLK

CMWG -
SELECTOR

INS GATE

DTrT -

CLKCW --

Select

Instructio --

Address
CONTROL

CMWG

Response

FIGURE 5.14

COMMAND INPUT

BLOCK DIAGRAM

99

32 Bit Word Gate

CMWG __"_ _

CMCLK

SBL

--- 32 Bit Word Gate

o DTGT/INS

RBL

FIGURE 5.15

COMMAND TIMING DIAGRAM

Data Gate
(DTGT) PARALLEL TO BYTE - Cycle (CTOCT3)

CLKDW CONVERTOR Time

Cycle Time

Clock
CLKP CLOCK

INHIBIT Reset COUNTER TIMER
DTGT

Instructions -- r
ycle Time Address ADVANCEADVAACE

Response -- -- ADV
GENERTOR

COMPARATOR
Window

ADV L Reset
Lower Upper
Window Window
Limit Limit Fa ult

PLY -- >. FAULT i (FIQUI,2)
CLKCW - DETECTOR ResetMR - Reset

FIGURE 5.16

PROGRAM CYCLE TIMER

BLOCK DIARAM

MODE 1

Cycle Complete Bi-lev el i_

Window i _

ADV ____ __ ___

Counter Reset ___ __ __

MODE 2

DLY - _ ___

Window I _ _ !

ADV

Counter Reset "_

FIGURE 5.17

PROGRAM CYCLE TIMER

TIMING DIAGRAM

(Normal nneration)

o Program Cycle External Synchronization - For many applications
it is desirable for a program major cycle loop to be repeated
at precise intervals. Since program major cycle times may
vary to-some limited degree based on the particular paths
taken during the execution of a given cycle, it is not possible
to precisely time-out each cycle based on the program code
alone. For such applications, the counter/timer provides an
external synchronization signal to the ACU to ensure a precision
fixed cycle rate. This is defined as a mode 2 operation.

o Real Time Clock - The counter/timer serves the function of
providing the programmer with a real time clock source. Hard-
ware is included to allow the program to read the state of
the counter on demand.

The following signal definitions apply to the counter operation:

DLY - This is a signal generated by the ACU when it has
executed or resides in the delay condition.

ADV - This is a signal generated by the IOU counter/
timer logic to signal the ACU to advance from the delay
mode. If it occurs before DLY, it is maintained in the
advance state until the ACU enters the delay mode. This
signal is enabled at the end of the established window
and is released upon recognition of DLY.

TMOT This is a signal that is generated in the RCU by a re-
triggerable one-shot and has a period equal to 1-1/2 T,
where T is the expected program major cycle time. TMOT
is triggered by the trailing edge of ADV. Whenever this
signal falls, the RCU forces a reconfiguration.

WND This is a signal generated by the counter/timer and
defines the region where the ACU is expected to complete
a major cycle.

The function of the program cycle time logic is to check for the
following fault conditions:

o Program major cycle time too short

o Program major cycle time too long, including the condition
where a cycle never completes due to a non-exited loop or
other gross failure.

o Failure of the program cycle fault timer itself.

The basic counter consists of an 8-bit binary counter which is

clocked at either 1.2288 msec or 2.4576 msec intervals, depending on a

circuit board jumper connection. The maximum count time would then be

103

314.5728 msec or 629.1456 msec, respectively. The counter output is fed to

a digital comparator which generates the window period (WND) during which

the completion of an ACU major cycle is expected to occur. The lower and

upper window limits are determined by two 8-bit words fed into the comparator

which are jumpered on the circuit board. At any time, the state of the

counter may be read by the program by addressing the counter (address 000000002)

and giving an input (INP) instruction along with a 4.8 psec wide word gate

(DTGT). The state of the counter will then be read into the ACU in four 4-bit
bytes with the 8-bit counter state right justified, and the remaining 8 bits

filled with zeros.

In mode 1 operation, a cycle complete bilevel is expected from the ACU

during the window period. This is accomplished by addressing the counter

(address 000000002), and giving an SBL instruction. This tests the window,

gives a response back to the ACU, causes the counter to be reset, and sends

and ADV signal to the RCU. The RCU requires this signal within a fixed

period of time, otherwise it determines that a fault has occurred. If the

window is not present when this bilevel occurs, a fault (FIOU-I) indication

is sent to the RCU. If the window falls (trailing edge of WND), and the

bilevel has not occurred, FIOU-1 is also enabled. The ACU has the capability

of testing the window by addressing the counter and giving an SKE instruction.

If the window is present, a response is sent back to the ACU. If the soft-

ware determines from this test that the cycle counter is in error, it can

give an SBL instruction at address 000000012, and a fault (FIOU-2) indication

will be sent to the RCU.

In mode 2 operation, a delay (DLY) signal from the ACU is expected to

go true during the window period. This signal remains true and the ACU is

inoperative until the end of the window period, at which time the counter is
reset, and an ADV pulse is sent to the ACU and RCU. If the leading edge

of DLY fails to occur during the window, or if the window falls without DLY

having occurred, then a fault (FIOU-1) indication is sent to the RCU. The ACU

has the same capability of testing the window and generating a fault (FIOU-2)
indication as in mode 1 operation.

104

5.1.7 Discrete Inputs

Figure 5.18 is a block diagram of the discrete input function, while

Figure 5.19 is the related timing diagram. A discrete is defined as a

function which is set by an input pulse and reset when its status is tested

by the ACU.

There are a maximum of 28 discrete inputsi(D14-D31) available to the

peripheral equipment. Each discrete is set by the trailing edge of a 400 nsec

minimum wide pulse applied to the appropriate input. The status of a discrete

is tested by addressing the desired discrete (addresses 110001002 through

110111112), and giving an SKE instruction. If the addressed discrete is in

the one state, it is reset and a response is sent to the ACU. All discretes

are reset during the initialization process (INRST). INRST generates the

master reset (MR) for all functions in the IOU.

5.1.8 Bilevel Inputs

Figure 5.20 is a block diagram of the bilevel input function, while

Figure 5.21 is the related timing diagram. A bilevel input is defined as

a function that is set or reset solely by the peripheral source, and is not

affected by having its status tested by the ACU. There are a maximum of

64 bilevel inputs (BLIO-BLI63) available. The status of a bilevel input is

tested by addressing the desired bilevel (100000002 through 101111112) and

giving an SKE instruction. A response is sent to the ACU if the addressed

bilevel is in the one state.

5.1.9 Bilevel Outputs

Figure 5.22 is a block diagram of the bilevel output function, while

Figure 5.23 is the related timing diagram. A bilevel output is defined as

a function which is separately set and reset by instructions from the ACU.

There are a maximum of 78 bilevel outputs (BL92 through BL079) available

to the peripheral equipment. This includes BL02 which is used to select

between the two redundant peripheral buses for serial data transfer. A

bilevel output is set to a one by addressing the desired bilevel (addresses

105

Discrete I I
DISCRETES e Dt

Inputs MULTIPLEXER Selected Discrete1

(014-DI31) REGISTER I DISCRETE L-- Response
SKE -

RECOGNITIONREST

LOG IC Reset
CLKDW-L

Resets
Address

Address RESET

Master Reset DECODER
(MR)

FIGURE 5.18

DISCRETE INPUT
BLOCK DIAGRAM

Discrete Input I I

Discrete Reqister

Instruction (SKE)

Response &, Reset A

FIGURE 5.19

DISCRETE INPUT

TIMING DIAGRAM

Bilevel Selected Bilevel

Inputs MULTIPLEXER RESPONSE

(BLIO-BLI63) SKE GATE- Response

___REST

Address FIGURE 5.20

BILEVEL INPUT

BLOCK DIAGRAM

Bilevel Input L

SKE

Response

FIGURE 5.21

BILEVEL INPUT

TIMING DIAGRAM

Resets I
Address RESET
(AO-A3) BILEVEL

DECODER Bilevel
RBL tOUTPUT Ouputs

(BIOO-BLO79)Instructions REGISTERREGISTER
Address --

Response 4-- ---

'FIGURE 5.22

BILEVEL OUTPUT

BLOCK DIAGRAM

SBL

RBL

Response AJ

BLx

FIGURE 5.23

BILEVEL OUTPUT

TIMING DIAGRAM

000000102 through 010011112), and giving an SBL instruction. It is reset
by giving the same address and an RBL instruction. A response is always
given to the ACU in either case. All bilevel outputs are- reset by the
master reset (MR).

5.2 Peripheral Interface Definition

This section defines the electrical characteristics of all interfaces
between the IOU and the peripheral equipment outside the DPA. Note that
the direct interfaces between the RCU and peripheral equipment is specified
in Section 6.0.

Except for the analog signal inputs, all signal levels are positive
logic, TTL compatible, where the levels are defined as follows:

Logic O: 0 v to +0.4 v
One unit load = -400 pa

Logic 1: +2.4 v to +5.0 v
One unit load = 20 .a at +2.4 v

Three different types of cross-strapping are used in the IOU-peripheral
interface. These consist of conventional cross-strapping, dual redundant
bus, and duplication and selection. Briefly, they consist of the following:

o Conventional Cross-Strapping - This consists of sender and
receiver conventional gates with pull-up resistors on the
receivers. This interface is used for the command and
telemetry lines.

o Dual Redundant Bus - This will be referred to as the peripheral
bus and consists of dual redundant buses, A and B. Power to
either bus is controlled by a bilevel called "BUSBL". When in
the "0" state, Bus A is enabled, and when in the "1" state,
Bus B is enabled. Power to the sender in any peripheral equip-
ment is also gated by the bilevel which address that equipment.
This would be the serial word gate input bilevel (SBLIx) in
the case of serial data.

o Duplication and Selection - In this case, each peripheral element
has a separate line running to/from the IOU for each interface.
The IOU selects which line is to be interrogated. The software
keeps track of which of the peripherals are in use and which are
in standby. This interface is used for bilevels, discretes and
analog inputs.

110

The following sections detail the various interfaces.

5.2.1 Analog Inputs

The A/D converter accepts up to 32 analog input channels. An internal

reference voltage is available which may be externally connected to any

number of inputs for self-test purposes. The selection of the input channels

and sample rate is controlled by the ACU. Each input is a semi-differential

configuration where the return side is internally isolated from ground by

approximately 1OKQ for the selected channel and essentially open circuit

for the non-selected inputs.

Specifications: Voltage range: +5.0 v
Overvoltage tolerance: +15 v
Resolution: 12 bits
Accuracy: +0.1%
Source Impedance: 1OKa max
Frequency response: dc to 160 Hz from O source

dc to 80 Hz from lOKQ source
Signal name designation: ANGOS and ANGOR through

ANG30S and ANG30R where S
is the signal line and R
is the return line

Number of inputs: 32 max
Input modularity: 8
Cross-strapping: duplication and selection

5.2.2 Discrete Inputs

Discrete inputs are defined as those inputs which are set by a pulse
from the peripheral equipment and are reset by the hardware in the IOU
whenever the status of the selected discrete has been tested by the ACU.
All discretes are automatically reset during power turn on to the IOU.

Specifications: Discrete set: Trailing edge of pulse
Minimum pulse width: 400 nsec
Loading: Logic 0, 0.9 unit load

Logic 1, 1 unit load
Number of inputs: 28 max*
Modularity: 8
Signal name designation: DI4-DI31*
Cross-strapping: duplication and selection

*NOTE: There is internal provision for 32 discretes, but
the first 4 (DIO-DI3) are dedicated to internal
IOU functions.

111

5.2.3 Input Bilevels

Input bilevels are defined as those inputs which are continuous as

long as the represented condition exists. They are not affected by having

their status checked by the ACU.

Specifications: Loading: Logic 0, 1 unit load
Logic 1, 1 unit load

Number of inputs: 64 max
Modularity: 8
Signal name designation: BLIO-BLI63
Cross-strapping: duplication and selection

5.2.4 Serial Input Data

Figure 5.24 is a timing diagram for the serial input data. The same

clock (CLKP) is used for both serial input and output data shifting. All

data is clocked on the leading edge of the clock. The word gate bilevel

(SBLIx) is used to enable the bus drivers in the peripheral equipment for

serial data input. Therefore, the power gates for the drivers should have

a fast turn on time (<100 nsec). The bilevel that selects between the two

redundant buses would ordinarily come from BL02 in the IOU. This will be

provided by a jumper wire on the connector to permit other sources to

control the bus select for some applications.

Specifications: Serial Input Bilevel

Drive Capability: Logic 0, 8 unit loads
Logic 1, 16 unit loads

Duration: 16 clock periods
Number of bilevels: 32 max
Modularity: 16
Signal name designation: SBLIO-SBLI31
Cross-strapping: sender, duplication and selection

receiver, conventional

Peripheral Shift Clock

Drive Capability: Logic 0, 12 unit loads
Logic 1, 24 unit loads

Powered off loading: Logic 1, 1.5 unit loads
Frequency: 104.167 KHz
Period: 9.6 Psec

112

I~ A I 19 vi -

FIGURE 5.~ ~24 -SER)A)A I -U '

77-

FIGURE 5.24 SC)ZAL 0JAJPC/7 7j/mlij'J

Peripheral Shift Clock (continued)

Duty cycle; 25% (pulse width = 2.4 psec)
Signal name designation: CLKP
Cross-strapping: peripheral bus

Serial Data Input

Loading; Logic 0,0.45 unit load
Logic 1, 0.5 unit load
Powered off, logic 1, 0.25 unit load

Word Length: 16 bits, LSB first
Bit rate: CLKP rate
Signal name designation: DATAI
Cross-strapping: peripheral bus

5.2.5 Serial Output Data

Serial output data transfer is exactly the same as serial input data

transfer except a separate bus line is used for a data line. Figure 5.25

is the timing diagram for serial output.

Specifications: Serial Output Bilevel

Drive capability: Logic 0, 8 unit loads
Logic 1, 16 unit loads

Duration: 16 clock periods
Number of bilevels: 16 max
Modularity: 16
Signal name designation: SBLO.-SBL15
Cross-strapping: sender, duplication and selection

receiver, conventional

Peripheral Shift Clock

Drive capability: Logic 2, 12 unit loads
Logic 1, 24 unit loads

Powered off loading: Logic 1, 1.5 unit loads
Frequency: 104.167 KHz
Period: 9.6 psec
Duty cycle: 25% (pulse width = 2.4 usec)
Signal name designation: CLKP
Cross-strapping: peripheral bus

Serial Data Output

Drive capability: Logic 0, 8 unit loads
Logic 1, 16 unit loads

Powered off loading: Logic 1, 1 unit load
Word length:- 16 bits, LSB first
Bit rate: CLKP rate
Signal name designation: DATA0
Cross-strapping: peripheral bus

114

5.2.6 Commands

The IOU contains a single command input buffer. Therefore, only one

command word can be loaded in at a time. The ACU must empty the buffer

before the next word can be loaded in. The falling edge of the command

word gate (CMWG) sets an internal bilevel which is tested by the ACU to

determine when a command word is in the buffer. This bilevel blocks any

further commands from being loaded into the buffer. It is reset by the

ACU after the buffer has been emptied. The command source supplies the word

gate and shift clock to the I0U for loading commands into the IOU.

Specifications: Command Word

Loading: Logic 0, 2.5 unit loads
Logic 1, O unit load

Word length: 32 bits max, LSB first
Modularity: 8 bits
Signal name designation: CMD
Cross-strapping: conventional

Command Shift Clock

Loading: Logic 0, 2.5 unit loads
Logic 1, 0 unit load

Clock pulse width: Logic 1, 400 nsec min
Logic 0, 300 nsec min

Clock edge: leading edge
Signal name designation: CMCLK
Cross-strapping: conventional

Command Word Gate

Loading: Logic 0, 2.5 unit loads
Logic 1, O unit load

Length: command word length
Signal name designation: CMWG
Cross-strapping: Conventional

5.2.7 Output Bilevels

Output bilevels are defined as continuous outputs which are set and

reset under ACU control. All output bilevels are automatically reset during

power turn on to the IOU.

115

Specifications: Drive capability: Logic 0, 7 unit loads
Logic 1, 14 unit loads

Number of outputs: 78 max*
Modularity: 4
Signal name designation: BLO2-BLO79*
Cross-strapping: sender, duplication and selection

receivers, conventional

*NOTE: There is internal provision for 80 output bilevels
but the first 2 (BL00, BL01) are dedicated to
internal IOU functions. BL02 will ordinarily be
dedicated for peripheral bus selection.

5.2.8 Telemetry

The telemetry interface may be implemented with long or short buffers.

The digital telemetry unit (or equivalent peripheral equipment) will supply
the shift clock, word gate, and minor frame sync. A major frame sync, if

required, may be handled by a conventional discrete input.

Specifications: Minor Frame Sync

Loading: Logic 0, 2.5 unit loads
Logic 1, 0 unit load

Minimum pulse width: 600 nsec
Signal name designation: MINFS
Cross-strapping: conventional

Word Gate

Loading: Logic 0, 2.5 unit loads
Logic 1, 0 unit load

Length: Telemetry word length
Signal name designation: WDGT
Cross-strapping: conventional

Telemetry Data

Drive capability: Logic 0, 32 unit loads
Logic 1, 16 unit loads

Word length: Determined by telemetry unit
Signal name designation: TMDIO
Cross-strapping: conventional

Telemetry Clock

Loading: Logic 0, 2.5 unit loads
Logic 1, 0 unit load

Frequency: 500 KHz max
Signal name designation: TLMCK

116

6.0 RECONFIGURATION CONTROL UNIT (RCU)

The RCU is an optional module of the DPA. It is used for those

applications which require automatic on-board DPA reconfiguration in the

event of faults in the DPA. The RCU controls the turn on and turn off of

power to the other DPA units, and thus controls the redundancy of the DPA.

When the RCU is not used, an external four-phase clock must be supplied

to the DPA. Also, the signals for turn on and off of power to the DPA units

must be supplied externally.

6.1 Internal Org anization

The RCU is designed using triple modular redundancy (i.e., using three

identical decision-making sections, with voting to determine the outputs).

There shall be no single failures in the RCU that will cause failures in the

DPA to go undetected or uncorrected.

The RCU consists of four portions: the three identical sections (A, B

and C) and a fourth section providing voting, differencing, clock oscillators,

clock fault detection and switching. All portions of the RCU are continuously

powered (and are controlled by commands processed and originating outside of

the DPA). See Figure 6.1.

6.2 Functions

The primary functions of the RCU are two: 1) Redundantly generate the

four-phase 819 kHz clocks for the DPA, and 2) control the manual or automatic

reconfiguration of the DPA by the processing of fault signals and control of unit

power turn-on.

Secondarily, the RCU provides: 1) DPA initialization and reset at

power turn-on, after a reconfiguration, or by command, 2) Assignment of unique

page numbers to each RAM module in use, 3) The program cycle fault detection,

4) Its own command processing and telemetry processing for communication from

and to the world outside the DPA, and 5) The communication of its status (and

which modules of the DPA are on) to the ACU.

117

Section A

Fault
Signals Control
from "Voting" Signals
Units Section to

Units

-o

Section C

Figure 6.1

RCU OVERALL BLOCK DIAGRAM

The RCU is designed to control up to the following quantity of

modules of the other DPA units:

ACU 3

IOU 3

DBS 2

ROM 1 2

ROM 2 2

RAM 6

It shall also be designed so that it may control lesser quantities of any

or all of these modules, with correspondingly reduced reconfiguration time.

The reconfiguration process is started when two fault signals are received

by the RCU within a time period. This reconfiguration process is (except for

RAM faults) enumerative. This means that starting with the current configuration,

one unit at a time is replaced by a standby unit until the fault does not re-

occure. For RAM faults, only the RAM units are reconfigured, also enumeratively,

until the fault signal does not occur again. No record is kept of previously

failed units. The first attempts at reconfiguration are made with the ACU, then

IOU, etc., in the order given in the above table. This is done since the ACU

has the hiahest failure probability, IOU next, etc.

6.3 Functional Requirements

6.3.1 Reconfiguration

Reconfiguration shall begin after two sequential fault signals have been

received within 220 to 320 msec, when the RCU is in the automatic mode. The

receipt of two sequential RAM fault signals within this time period results in

a confirmed RAM fault, which initiates stepping of the RAM unit power control.

The receipt of two sequential fault signals of any other type within this time

period results in a confirmed general fault, which initiates stepping of all

of the units power control.

119

The power control signals to each unit consist of voted bilevel signals,

one for each module (18 in all) which are high when that module is to be on

and low at all other times. A bilevel signal is delivered back to the RCU

from each module confirming the actual power (on-off) status of that unit.

The power control signal and corresponding power confirmation signal for

each module are compared. If any unit should be on, but is not, this is

treated as a fault signal (RAM or general, as appropriate).

If the RCU is in a reset condition, no reconfiguration occurs due to

the fault messages. When in the manual mode sequential stepping of any particular

type of unit may occur by command. All units may be turned off by the off

command to the RCU. The initialize command may be used to turn on the "initial

combination of units.

6.3.1.1 Fault Signals. The possible fault signals are:

FIOUA-1 FRAMA
FIOUB-1 FRAMB RAM
FIOUC-1 FRAMD
FIOUA-2 FRAME
FIOUB-2 General FRAMF

FaultsFIOUC-2
FACUA
FACUB
FACUC
AUXA not now
AUXB '

assigned

6.3.1.2 Program Cycle Fault Detection

The RCU shall contain timers, which must be reset each 97.6 to 100.04

msec by the ADV (advance) signal from the ACU, or a fault signal will be

generated, when in the automatic mode. This detects program cycle time faults,

resulting either from hardware failures or software faults.

120

6.3.1.3 Power Turn-on Initialization

When power is turned-on to the RCU, or if power is turned off for more than

10 psec and then turned on again, the RCU shall initialize the unit power control

to the "initial" combination of units in the automatic mode. This prevents power

interruptions from placing the DPA in an "off" condition. If the initial combination

is faulty, reconfiguration will then automatically occur.

6.3.1.4 Sequence of Reconfiguration

The sequence of reconfiguration is the order in which the enumerative

reconfiguration occurs, while the confirmed fault signals persist.

6.3.1.4.1 RAM Sequence

For a confirmed RAM fault, only the RAM units shall be sequenced

(stepped). Since the RCU can control a maximum of 6 RAM modules, the

following cases of number of RAM modules available and needed can occur:

Case Available Needed Initial Combination Total Combination

1 2 1 A 2
2 3 1 A 3
3 4 1 A 4
4 5 1 A 5
5 6 1 A 6
6 3 2 AB 3
7 4 2 AB 6
8 5 2 AB 9
9 6 2 AB 15

10 4 3 ABC 4
11 5 3 ABC 10
12 6 3 ABC 20
13 5 4 ABCD 5
14 6 4 ABCD 15

Also shown are the "initial" combination of RAM modules and the number

of combinations* of RAM units which can meet the "needed" requirements. A

complete cycle of the sequence of RAM stepping will test all combinations

*Given by A! , where A = no. available and N = no. needed

121

prior to repeating. For example, for the 6 available, 2 needed case (case 9)
the sequence will be:

Initialize -- + AB BC - CD DE EF - FA * AC + BD

_ CF BE - AD FB EA DF + CE

The stepping may begin at any point in this sequence, that point being

determined by the current combination at the time of the confirmed RAM fault.
This tends to put previously tried combinations at the end of the sequence.

All cases shall be selectable in the RCU by changes in the terminal-to-
termnal hardwiring internal to the RCU.

6,3.1.4.2 General Sequence

For a confirmed general fault, all units shall be sequenced (stepped).
This sequencing shall begin by stepping each unit type by one step until each of
the six types have been stepped. This is intended to most quickly correct
single failures, as they should be avoided in this first pass. If this is
unsuccessful (the confirmed general fault persists), then all combinations of
units are stepped through. The How of this stepping is shown in Figure 6.2.

The maximum number of combinations which are stepped through (assuming
the maximum number of modules of all types and case 12 for the RAM's) is:

6 + (3X3X2X2X2X20) = 1446

The sequence shall repeat indefinitely if no viable combination is found.

6.3.1.5 System Reset

Following each reconfiguration attempt, the RCU shall generate a nominal
12 msec reset to the ACU (and to the RCU fault confirmation logic) to cause
a reset and initialization of the program. The program must then run through
two cycles, and be faultyin both, before another reconfiguration step is made.
This DPA reset may also occur by command.

122

)L n r4G L' 8 e -h z e
,u 6. Flu-" Act) Flow U PIC,

yes Yes

Fiue62RURcniuainFo

6.3.1.6 RAM Page Assignments

Since from 1 to 4 RAM modules can be on at a time, for all cases of 2

or more on at a time, it is necessary for the RCU to assign each on RAM module

a unique program address, termed a page number. This page number is a two-bit

code, indicating which of the four possible page numbers is assigned to a

particular RAM module. The RCU shall assign these page numbers so that they

are unique, in the order 00, 01, 10, 11.

6.3.2 Clock Generation

The DPA clocks shall be four-phase 819 kHz signals, generated in a

completely redundant fashion so that no single failures can change the

frequency by more than 10 kHz or prevent any or all of the clock phases from

being present. These phases shall be derived from redundant 6.554 MHz

crystal oscillators. All redundancy shall be passive and automatic without

command interaction. Clock faults shall not cause any effect on the DPA other

than to cause the timing to "hold" for up to 300 msec, at which time operation

is resumed.

6.3.3 RCU Communication

RCU communication can occur between the RCU and the DPA (ACU) or

between the RCU and the non-DPA external world. The former allows for

communication to the DPA of the reconfiguration status (which units are on)

and (through the IOU), telemetry to the external world. The latter provides

for those commands to the RCU that are needed (and which cannot go through

the IOU, because the "on" IOU may be failed), and for the RCU status telemetry

(which includes the reconfiguration status) (and which also cannot go through

the IOU).

6.3.3.1 ACU Communication

The ACU communication consists of a serial exchange of data between the RCU

communication register and the ACU A and Q registers upon a TRC instruction.

The format of this data is shown in Table 6.1. A "1" indicates the module is

selected (on).

124

Table 6.1
RCU Status Word in ACU

Bit No. Register Module Selected Other Status

0 A ACU A
1 ACU B
2 ACU C
3 IOU A
4 IOU B
5 IOU C
6 DBS A
7 DBS B
8 ROM1 A
9 ROMI B

10 ROM2 A
11 ROM2 B
12 RAM A
13 RAM B
14 RAM C
15 RAM D

RAM E
0 Q RAM F1
2 DSTM1, Voting Difference Status,. Unit Control*

DSTM2 " " " " "

4 0ABC, Clock On (1 = Clock A)
5 OSCAF, Clock A failure (if = 1)

6 OSCBF, Clock B failure (if = 1)
7 DSTA1, Voting Difference Status, System*

8 DSTB1, Voting Difference Status, System*

9 DSTA2, Voting Difference Status, Timing*

10 DSTB2, Voting Difference Status, Timing*
11 Not Used

12
13
14
15

AB

*For the two bits: 0 0 = No RCU faults
(in each pair) 1 0 = Section A failure

0 1 = Section B failure
1 1 = Section C failure

125

The voting difference status bits indicate failures in the

redundant sections of the RCU, as indicated.

6.3.3.2 Commands

The RCU command interface with the external world is serial digital.

This interface is cross-strapped for redundant sources and consists of three

types of signals. They are: 1) 4-bit serial NRZ data word (CMDR), 2) Data

clock (CMCLKR) synchronized with the data word, and non-synchronous with the

DPA. The frequency of clock and data may be any desired, and 3) A word gate,

(CMWGR) enclosing the data word.

Upon the fall of the word gate, the new command will be executed and

will be stored until a subsequent command replaces it. A power reset will

set the command register to the automatic mode state.

The command decoding is shown in Table 6.2. The reset DPA or unit step

commands are executed once per command, only when in the manual mode.

6.3.3.3 Telemetry

The RCU telemetry interface with the external world is serial digital.

This interface is cross-strapped for redundant destinations and consists of

three types of signals. They are: 1) 16-bit serial data word (TMDR),

2) Telemetry clock (TLMCKR), which will synchronize the bits of the data word,

and 3) A word gate (WDGTR), which must enclose the 16 bits of the data word.

The telemetry bit rate is non-synchronous with the DPA and may occur

at any frequency. Telemetry data changes are blocked out while the word

gate is present. The encoding of the telemetry data is shown in Table 6.3.

There is a completely separate telemetry interface with each of the three

redundant sections of the RCU.

126

Table 6.2

RCU COMMAND CODING

Bits

*MSB LSB Function

0 0 0 0 DPA Off

0 0 0 1 Initialize

0 0 1 0 Manual Mode

0 0 1 1 Automatic Mode

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0 Reset DPA

1 0 0 1 Step ACU

1 0 1 0 Step IOU

1 0 1 1 Step DBS Accepted only
for manual mode

1 1 0 0 Step ROM 1

1 1 0 1 Step ROM 2

1 1 1 0 Step RAM

* Note - MSB arrives first

127

Table 6.3

RCU TELEMETRY CODING

Bit No. Indication*

First 0 RCUDS (Voting difference)

1 RAM F

2 RAM E

3 RAM D

4 .RAM C

5 RAM B

6 RAM A "I" = A unit on
7 ROM 2 1 "" = B unit on

8 ROM 1

9 DBS

10 IOUC

11 IOUB

12 IOUA

13 ACUC

14 ACUB

Last 15 ACUA

*Note - a logical "1" indicates on

128

6.4 Tester Interfaces

The RCU interfaces with the DPA tester allow stimulation and monitoring

of the RCU during test. The inputs (stimuli) are listed in Table 6.4 and

the outputs are listed in Table 6.5.

Table 6.4

RCU TEST INPUTS

Name Function

GREST-T/ Provides RCU (&DPA) reset

GENF-T/ Simulates general power configuration

RAMF-T/ Simulates RAM power confirmation

OSCAFC-T/ Simulates A clock failure

OSCBFC-T/ Simulates B clock failure

Table 6.5

RCU TEST OUTPUTS

Name Function

RAUTO-T/ Indicates RCU in automatic mode

TRTM-T/ Indicates transient fault registered

CFAU-T/ Indicates confirmed general fault

RFAU-T/ Indicates confirmed general fault

RVFF-T/ Indicates DPA in off condition

OSCAF-T/ Indicates Clock A failed

OSCBF-T/ Indicates Clock B failed

CLKAGNT Indicates Clock A selection

CLKBVNT Indicates Clock B selection

Note that both inputs and outputs are bilevels

129

7.0 PACKAGING

The DPA will be packaged as a series of modules, each of which plugs

into the adjacent module. These "internal" connectors provide the data bus

and RCU to/from other unit intercommunication within the DPA. In addition,

some units will have test connectors and the IOU will, of course,have the

several connectors necessary for inputs and outputs. The RCU will also have

a connector for inputs and outputs and for system power input (See Section 8.0).

All modules have the standard dimensions of 6 in. x 8 in. (15 x 20 cm).

They vary in thickness and weight according to function. These figures are

summarized in Table 7.1.

Table 7.1

DPA UNIT SIZE AND WEIGHT (ESTIMATES)

Unit Type Thickness (in/cm) Weight (lb/kg)

ACU 1.6/4.1 1.6/0.72
IOU (MAX I/0) 1.2/3.0 1.2/0.54 (1.0/0.45 for min)
RCU 3.2/8.1 3.2/1.45
RAM (256) 0.8/2.0 0.8/0.36
RAM (512) 0.8/2.0 0.9/0.41
ROM (1024) 0.8/2.0 0.8/0.36
ROM (2048) 0.8/2.0 0.9/0.41
PWM (1024) 1.2/3.0 1.4/0.63
PWM (2048) 1.6/4.1 1.8/0.82
APM (1024)* 0.8/2.0 0.8/0.36
APM (2048)* 0.8/2.0 0.9/0.41

*Ground use only

The modules (slices) are stacked together to form the DPA. Each slice has

mounting feet on one of its 8 in. (narrowest) surfaces. The slices are held

together by through bolts and end covers. These add 0.8 in (2.0 cm) to the

length and 0.6 lb plus 0.05 lb/in of stack length (0.27 kg plus 0.009 kg/cm

to the weight of the DPA.

Using these figures, one can calculate the weight and size of any

particular DPA configuration.

130

8.0 POWER

The DPA requires the following voltages at a composite regulation of

+5% from an external source:

+5 VDC - logic (all units)

+15 VDC - IOU, PWM

-15 VDC - IOU, RCU, APM, PWM

+28 VDC - Relay switching (all units)

The power requirements per unit are as follows: (note that only one

ACU, IOU or RCU may be on at a time, but more than one of each type of memory

unit may be on simultaneously).

Unit Type Power Consumption (watts)

ACU 6.4
IOU 7.0 max (6.0 min)
RCU 18.7

RAM (256) 0.9
RAM (512) 1.0
ROM (1024) 0.5
ROM (2048) 0.6
PWM (1024) 5.0
PWM (2048) 7.5
APM (1024)* 9.1
APM (2048)* 15.6

*Ground use only

The APM power (all but , 4 watts) is from -15 VDC. The IOU power includes

0.3 W of +15 VDC and 0.7 W of -15 VDC. The RCU uses 0.2W of -15VDC. The PWM

power is estimated at 1/3 from each of +5 VDC, +15 VDC and -15 VDC. Power

consumption from +28 VDC is essentially nil, except when'units are being

reconfigured. The max and min figures for the IOU refer to maximum and

minimum input/output capabilities. All power figures are averages. Peak

consumption may be up to 15% higher.

131

Appendix B

GLOSSARY

ABS ATA Bootstrapping Test Subroutine*
ACS Attitude Control Subsystem
ACU Arithmetic and Control Unit
A/D Analog-to-Digital (converter)
ADD Add to A-register #
ADQ Add to Q-register #
APM Alterable Program Memory
AM Applications Module *
AMS Application Module Scheduler *
ASM Asynchronous Module*
ATS Asynchronous Task Scheduler*
AVS AMS Verification Subroutine*
AU Arithmetic Unit (or Astronomical Unit)

BITE Built-in Test Equipment

CCS CER Check Subroutine*
CER Control Executive Routine*
CGA Configurable Gate Array
CM Center-of-Mass
CMG Control Moment Gyro
CMOS Complementary MOS
CMP Complement #
COPE Control Processing Electronics
CS Control Subroutine*
CTI Cycle Timing Interrupt
CU Control Unit

D/A Digital-to-Analog (converter)
DBS Data Bus
DPA Digital Processor Assembly (See COPE)
DSN Deep Space Network
DVD Divide #

EBR Executive Bootstrap Routine*
EMI Electro-Magnetic Interference
ERP Equivalent Received Power
ETS Executive Tracer Subroutine*
EXEC Executive *

* - Software
- Instruction

1

GLOSSARY (continued)

FI Fault Interrupt
FMECA Failure Mode, Effects and Criticality Analysis
FOV Field-of-View
FSS Fine Sun Sensor
FVS Fault Signal Verification Subroutine*

HCU Hardcore Unit

IC Integrated Circuit
I/O Input/Output
IOU Input/Output Unit
IRU Inertial Reference Unit

LDA Load A-register #
LDQ Load Q-register #
LDT Linear Differential Transformer
LDX Load X-register #
LED Light-Emitting Diode
LSB. Least-Significant Bit
LSI Large Scale Integration

MCS Memory Checking Subroutine*
MeV Million Electron-Volt
MOS Metal-Oxide Silicon
MPP Multi-Purpose Processor
MPY Multiply #
MSB Most-Significant Bit
MSI Medium Scale Integration

PBS Primary Bootstrap Subroutine*
PDB Peripheral Data Bus
PLA Programmable Logic Array
PROM Programmable ROM
PS Priority Scheduler *
PWM Protected Write Memory
PWS PWM Write Subroutine*

RAM Random Access Memory
RCS Reaction Control System
RCU Reconfiguration Control Unit
RF Radio Frequency .
RIG Rate Integrating Gyro
ROM Read-Only Memory
RTG Radioisotope Thermo-electric Generator
RWA Reaction Wheel Assembly

2

QLOSSARY (continued)

SBS Secondary Bootstrap Subroutine*
SH Suspension Handler*
STA Star Tracker Assembly (or Store A-register #)
STQ Store Q-register #
STX Store X-register #
SSI Small Scale Integration
SUB Subtract from A-register #
SUQ Subtract from Q-register #

TMR Triple-Modular Redundant
TTL Transistor-Transistor Logic (also T2L)
TVC Thrust Vector Control

UHF Ultra-High Frequency

VDE Valve Drive Electronics

WASS Wide Angle Sun Sensor

AV Delta-Velocity (correction)

3

